WEKO3
アイテム
1次元複素多様体の可視化をめぐって
https://kougei.repo.nii.ac.jp/records/2000103
https://kougei.repo.nii.ac.jp/records/2000103d5a00557-3a3f-4fcc-8ee1-ac03a1fa4085
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2024-06-19 | |||||
タイトル | ||||||
タイトル | 1次元複素多様体の可視化をめぐって | |||||
言語 | ja | |||||
タイトル | ||||||
タイトル | Visualization of a One-Dimensional Complex Manifold | |||||
言語 | en | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
著者 |
宮澤, 篤
× 宮澤, 篤 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | From prehistoric paintings on cave walls to modern flat panel displays, plane media have always been a versatile means for showing projected images of three-dimensional objects. If dimensional analogy is correct, one may suppose that stereoscopic displays could be used to represent the projection into three dimensions of objects from a four-dimensional world. Adding one more dimension will bring various benefits. For instance, it is well known that the calculation of total circuit impedance can be simplified by using complex number representation. However, it is generally not easy for us, living in three-dimensional space, to use our intuitive imagination to understand the four-dimensional world. A story about a square that lives in a two-dimensional world, which was narrated by Edwin Abbott Abbott in the book "Flatland," is almost the only glimpse for non-mathematicians of a shift into higher dimensions. In 1982, the author attempted to present complex functions graphically by superimposing graphs of the functions that map a real part of a complex number to a complex number. By making the most of today's advances in stereoscopic systems, we can understand the projection of a one-dimensional complex manifold more intuitively. The purpose of this paper is to introduce some studies relating to the visualization of a one-dimensional complex manifold, and to discuss analytical approaches and methodologies. Using recent stereoscopic systems to gain another view of classical mathematics may contribute to educational improvement. | |||||
言語 | en | |||||
書誌情報 |
ja : 東京工芸大学芸術学部紀要 en : Bulletin of Faculty of Arts, Tokyo Polytechnic University 巻 20, p. 41-48 |
|||||
出版者 | ||||||
出版者 | 東京工芸大学芸術学部 | |||||
言語 | ja | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13493450 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AN10507753 |