ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要
  2. 東京工芸大学芸術学部紀要
  3. Vol.20

1次元複素多様体の可視化をめぐって

https://kougei.repo.nii.ac.jp/records/2000103
https://kougei.repo.nii.ac.jp/records/2000103
d5a00557-3a3f-4fcc-8ee1-ac03a1fa4085
名前 / ファイル ライセンス アクション
20-5.pdf 20-5.pdf (1.4 MB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2024-06-19
タイトル
タイトル 1次元複素多様体の可視化をめぐって
言語 ja
タイトル
タイトル Visualization of a One-Dimensional Complex Manifold
言語 en
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 宮澤, 篤

× 宮澤, 篤

WEKO 3007

ja 宮澤, 篤

ja-Kana ミヤザワ, アツシ

Search repository
抄録
内容記述タイプ Abstract
内容記述 From prehistoric paintings on cave walls to modern flat panel displays, plane media have always been a versatile means for showing projected images of three-dimensional objects. If dimensional analogy is correct, one may suppose that stereoscopic displays could be used to represent the projection into three dimensions of objects from a four-dimensional world. Adding one more dimension will bring various benefits. For instance, it is well known that the calculation of total circuit impedance can be simplified by using complex number representation. However, it is generally not easy for us, living in three-dimensional space, to use our intuitive imagination to understand the four-dimensional world. A story about a square that lives in a two-dimensional world, which was narrated by Edwin Abbott Abbott in the book "Flatland," is almost the only glimpse for non-mathematicians of a shift into higher dimensions. In 1982, the author attempted to present complex functions graphically by superimposing graphs of the functions that map a real part of a complex number to a complex number. By making the most of today's advances in stereoscopic systems, we can understand the projection of a one-dimensional complex manifold more intuitively. The purpose of this paper is to introduce some studies relating to the visualization of a one-dimensional complex manifold, and to discuss analytical approaches and methodologies. Using recent stereoscopic systems to gain another view of classical mathematics may contribute to educational improvement.
言語 en
書誌情報 ja : 東京工芸大学芸術学部紀要
en : Bulletin of Faculty of Arts, Tokyo Polytechnic University

巻 20, p. 41-48
出版者
出版者 東京工芸大学芸術学部
言語 ja
ISSN
収録物識別子タイプ ISSN
収録物識別子 13493450
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10507753
戻る
0
views
See details
Views

Versions

Ver.1 2024-06-19 08:48:54.555418
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3