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ASPECTS OF NON UNI-RULED VARIETIES AND ANOTHER
REPRESENTATION OF VARIETIES BY PROJECTIVE SYSTEMS IN
PROFINITE GROUPS

KAZUHISA MAEHARA"

ABSTRACT. In this article we construct a projective system of algebraic fundamental
groups associated to a system of sub-varieties of a variety over a sub-p-adic field and
investigate morphisms between varieties, deformation of a fibre space. We give a proof
of higher dimensional Mordell conjecture over a function field ([No], [Km], [F], [Km]).
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1. INTRODUCTION

Let K be a sub-p-adic field. We investigate the category of varieties over K by a projec-
tive system of profinite groups using Galois-Mochizuki’s theory ([Mch], [GG], [SGA]). We
construct the projective system of algebraic fundamental groups associated to a system
of sub-varieties of a variety over K. By the functor S/X ~» P/m(X), we have a projec-
tive system 7(X) in the product I1,I1 ¢y 1I([x]), which we denote by liinxexl_[([x]). We

obtain the following theorems in the next section:
Theorem 1. Let X, Y be varieties over K. The following natural map is bijective:
Mor¢™ (X, Y) =~ Hom?" % (7 (X), m(Y)),

considered up to composition with an inner automorphism arising from ker(w(Y) —
m(K)).

Theorem 2. Let p be a prime number and K a sub-p-adic field. Let S be a variety over
K and X, Y S-varieties, respectively. Assume that f : X — 'Y be a surjective morphism
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over S and that X is isomorphic to Xo X S over S. Furthermore suppose Autg(Y) is a
locally algebraic group over K. Then there exist an etale covering V — U where U is an
open set of S and K-variety Yy such that Yy = Yy xg U.

In the third section we give some questions about the absolute Galois groups (cf.[L]).

We have the following proposition.

Proposition 1. Let K be a sub-p-adic field. Let X be a projective variety of general type
with dimension n. There exist a projective space P™ and a generically finite surjective
morphism m : X — P™ such that there exist no projective varieties V such that two

dominant rational maps
X—-V =P

factor through m: X — P™.
In the last section we give a proof of the following theorem:

Theorem 3. Let f : X — C be a fibre space with the general generic fibre of general
type from a projective smooth variety X onto a curve C over the complex number field.
Assume there exists a set of sections of X/C which becomes Zariski dense in X. Then
var(X/C) = 0.

2. ANOTHER REPRESENTATION OF VARIETIES BY PROJECTIVE SYSTEMS

Let X be a locally noetherian scheme and z : Spec(2) — X a geometric point with a
value in an algebraically closed field €. Let C be the category of finite etale coverings of
X and F a functor over C such that F(X) is the set of geometric points of X above Z.
Then F' is represented by a pro-object P, which is said to be the universal covering of X
at the point . The fundamental group of X at T is defined to be a topological group
Aut(F') or the dual of Aut(P), which is denoted by (X, Z). It is a profinite group, i.e.,
a projective limit of finite groups. Let & be the category of locally noetherian schemes
and P that of profinite groups. We thus have a functor 7 : S ~ P such that m(X) is
a profinite group for an object X of S. For a morphism f : X — Y in § we have the
following diagram :

S/X ~ P/mi(X)

| |

S/Y ~ P/mi(Y)
We restrict ourselves to the category of varieties over a certain fields.
Let p be a prime number. Let K be a sub-field of a finitely generated field extension
of Q,, which is called a sub-p-adic field. We investigate the category of varieties over K
by representing it to the category of profinite groups. Let X be a normal variety over K
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and Oub(X) the set of open subvarieies of X. Let U, V be members of Oub(X) such
that V' C U. Then 7 (V) — m(U) is surjective. We want to transfer the etale topology
to the corresponding profinite groups. For an etale covering V. — U m (V) C m(U),
which is open in usual topology. We construct Grothendieck topology on a profinite
group 71 (X). This topology is generated by a family of usual open mappings and finite
surjections such as (V') — 71 (U), respectively. Since the generic point 7 of X = NyexU,
m1(n,7) — w1 (U, 7) is surjective. We denote a groupoid {m(X,a)} for all geometric points
a by m(X). If f: X — Y is dominant between varieties over K, m(f) : m(X) — m(Y)
such that there exists an induced commutative diagram

Gal(/nx) —— Gal(/ny)

T

m(X) m(Y)

m1(f)

Endowing this topology to 71(X), we denote it by II(X). We denote by X™ the set
of points of codimension n in X and by [z] the closure of a point x in X, which is a
subvariety of codimension n in X. Consider a product IL,IL,¢ x(,)II([z]). By the functor
S/X ~ P/m(X), we have a projective system in the product IT,IT ¢y II([z]), which we
denote by lim  II([z]).

s reX

Definition 1. Let X be a variety over K. Define a functor m from the category of varieties
over K to that of profinite groupoids:
X ~lim  TI([z])

— reX

We make use of the following Mochizuki’s theorem fundamentally.

Theorem 4. [Mch| Let p be a prime number. Let K be a subfield of a finitely gen-
erated field extension of Q,. Let L, M be function fields of arbitrary dimension over
K. Let Homgpex)(Spec(L), Spec(M)) be the set of K-morphisms from M to L. Let
Hom{""(T'z,T'ys) over T'x, considered up to composition with an inner automorphism
arising from ker(I'y;, I'x), where I', and Ty are the absolute Galois groups of L and
M, respectively. Then the natural map Homg (Spec(L), Spec(M)) — Homp** (', T'y) is

bijective.
Theorem 5. Let X, Y be varieties over K. The following natural map is bijective:

Mor¢™ (X, Y) =~ Hom?? ) (m(X), m(Y)),

considered up to composition with an inner automorphism arising from ker(m(Y) —
™ (K)).
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Proof. Take a surjection f : X — Y. Naturally f determines a continuous homomorphism
m(X) — w(Y) over m(K). Convesely, take a surjective continuous homomorpism ¢ :
m(X) — w(Y). From Mochizuki’s theorem above, every point x € X maps to a point

y € Y, respectively. Thus a surjective morphism from X onto Y is determined.
O

We hence have the following
Aut g (X) >~ Outy, (k) (7(X))

Proposition 2. Let S be a K-variety and p : X — S, ¢ : Y — S projective smooth
varieties over S. Assume that f : X — Y is a surjective morphism over S there exists
an isomorphism X = Xg X S over K, where Xq is a projective smooth variety over K.
Then there exist an etale covering V. — U where U is an open set of S and K -projective
smooth variety Yo such that Yy = Yy X U.

Proof.
Os = R'p.Ox/s = R'p.f*Oys + R'q.Oy/s

The last arrow is injective. Kodaira-Spencer map for X/S is zero on the first left map and
so Kodaira-Spencer map for Y/S is also zero. We have another proof using the property

that Autg(Y) is a locally algebraic group over K. O

Theorem 6. Let p be a prime number and K o sub-p-adic field. Let S be a variety over
K and X, Y S-varieties, respectively. Assume that f: X — 'Y be a surjective morphism
over S and that X is isomorphic to Xo X S over S. Furthermore suppose Autg(Y) is a
locally algebraic group over K. Then there exist an etale covering V. — U where U is an
open set of S and K-variety Yy such that Yy =2 Yy X U.

Proof. We for simplicity assume S is a spectrum of the function field of S. We give
the out-line of the proof. The complete proof is published elsewhere. For a surjective

S-morphism f: X — Y, we have an exact sequence
1= 7m(X) = 7(X)—=7(S) =1

and

l=7Y)=7nY)—=n(S) =1

By hypothesis Xz = (XoxxS)g. 1 = 7(Y) = 7(Y) — 7(S) — 1 has a dominant section
over 71(Sg). Thus the extension class of 7(Yy) factors through H'(m(Sg), Autz(Y)).
Since Autz(Y)) is a locally algebraic group, the extension class becomes trivial after

base-changing S by a finite cover U. We have the following exact sequence

1 — Hom(m (K), Out(n(Y))) — Hom(w(S), Out(m(Y))) — Hom(mw(Sg), Out(n(Y)))
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Our extension class of m(Y") is in the middle term, the image of which is trivial in the
third term. Hence we have a variety Y defined over K such that 7(Yp) is the extension

class in the first term. Therefore

YUgYZ)XKU

Corollary 1. o Y is a projective S-variety.
o Y is a spectrum of the function field of an S-variety of Kodaira dimension > 0.
o Y is an S-log-variety a compactification of which is projective.
o Y is a spectrum of a semi-local S-algebra of height one with Kodaira dimension
> 0.

Corollary 2. Let f° : X° — Y? be a log-fibre space over K, {xo/yo the relative log
canonical invertible sheaf over X and f : X — 'Y a semi-stable compactification of X°/Y°.
Assume K(Exoyyel,) > 0. Then

max k(det £.E17)y,) > var(X?/Y)

Proposition 3. Let K be a sub-p-adic field and L a function field over K. Let X and
Y be a K-variety and a spectrum of a ring R with dimension one over L such that

k(Y)=dimY. The following map is bijective

Mor™ (X, Y') = Hom(g, (1 (X), m (Spec(R))),

considered up to composition with an inner automorphism arising from ker(m(Y) —

™ (K)).

Proof. Apply the addition formula to a fibre space [Y] — [Spec(L)] associated to Y —
Spec(L) = {n}. From the formula, we have x([Y]) < k([Y]7) + dimg[Spec(L)]. Hence
Y — Spec(L) =7 is a hyperbolic curve over L. We first have

Mor(™ (X, Y) = Hom "7}, (my (X)), mi(Spec(R))),

considered up to composition with an inner automorphism arising from ker(m(Y) —
m1(L)). By induction,

Moy (X, Y') ~ Hom(¥(i (1 (X), w1 (Spec(R))),

considered up to composition with an inner automorphism arising from ker(m(Y) —
m(K)). O

We make use of the following Mochizuki’s theorem A.
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Theorem 7. [Mch]| Let p be a prime number. Let K be a subfield of a finitely generated

field extension of Q,. Let Xk be a smooth pro-variety over K and Y a hyperbolic pro-

curve over K. Let Hom%m(XK, Yk) be the set of dominant K-morphisms from Xk to Yk
open

and Homp"™*(Ix ., Iy, ) the set of open continuous group homomorphisms Ix, — Ily,

over 'y, modulo up to inner automorphisms arising from Ay, . Then the natural map
Hom{™ (Xx, Vi) — Hom**" (Ilx,, Iy, )
1s bijective.
3. ASPECT OF NON UNI-RULED VARIETIES
Proposition 4. Let K be a sub-p-adic field. Let X be a projective variety of general type
with dimension n. There exist a projective space P™ and a generically finite surjective
morphism w : X — P™ such that there exist no projective varieties V such that two

dominant rational maps
X—-V =P

factor through m: X — P".
Proof. Let F(X)={V|f: X —V a dominant rational map over K, x(V)>0}. We
denote I'y = (K (X)) = Gal(/K(X)) and by Xy — X a Galois extension K(V) —
K(Xy), respectively. Hence we have the following exact sequences
1—>FXV_>FV_>FV/FXV—>1
and
1— HI(P, Fv) — H1<Fv,rv) — HI(FXV,Fv) — HQ(P, Fv),

where P =T'y/T'x,,. The last map above is the following push-out to some variety W in

the following diagram

1 1.
We also have the following exact sequences

1_>FXV _>FX_>FX/FXV_>]-
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and
1— H'(Q,Tv) = H'(Ux,I'v) = H' (T'x,,T'v) = H*(Q,Tv)

, where @ =T'x/T'x,. We estimate Mory®™ (X, V) ~ Hom>™(I'x,T'y).

We have H'(I'y,T'v) D Hom>™(T'y, T'y). Since dim Bir(V)° < dimV = n, we have
dim Mor%™(X, V) < n. Thus sup, dim, F(X) < n, where z is any point of represented
algebraic stack of F/(X). On the other hand, dim AutxP™ = dim PGL(n+1) = (n+1)?—1.
We therefore obtain a projective space P™ such that 7 : X — P" satisfying the condition
that there exist no varieties W such that K(P") c K(W) C K(X).

O

Definition 2. Let K be a sub-p-adic field. Let " be an absolute Galois group of a function
field over K. Gamma is said to uni-ruled if there exists an open subgroup of I' such that the

outer automorphism group Outr, (I') has a non-trivial linear algebraic subgroup. ([Mat],
[Ko], [MP])

Proposition 5. Let P! be a projective space of dimension one over K. Then there exists
a ramified covering T : Pt — P!

Proof. Let K[z] be a one dimensional polynomial ring. Take ¢™ = z. We have Spec(K[t]) —
Spec(K|[z]) and we get a ramified covering 7 : P* — P! O

Proposition 6. Let X be a uni-ruled variety. Then there exists a ramified cover T:Y —
X such that'Y is a uni-ruled variety. In other word, there exist no uni-ruled variety which

s generically finite over a non uni-ruled variety.
Proof. Tt is easily proven from precedent proposition. O

Let K be an algebraic closure of K and P} a projective line. We denote I'p,. = I'p1

and I'p = FP},(, respectively.

Proposition 7. Let K be a sub-p-adic field. Let P™ be the projective space over Q and
Pl the pull-back over K. Let I'pp be the absolute Galois group of the function field of
Py

Let X be a projective variety over K and I'x the absolute Galois group. Then

Fp}} ~ FPK XTp " XTIk FPK
Proof. Since P is birationally equivalent to P}, X -+ i P,

FP;} ~ FPK XDy =" XTIy FpK
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Proposition 8. Let K be a sub-p-adic field, S a function field over K and S the algebraic
closure in an algebraically closed field. Let I'pr be the absolute Galois group of the function
field of P%. Let X be a projective variety over S and I'x the absolute Galois group. Let
X = Xg and P" = P%. Assume

o [: X — T'pn is a generically finite morphism over S,

o ['x CT'py is a continuous homomorphism associated to f: X =P,

o I'y xpy I'g, =T x I'g,

o ['x C Fpg} induces I'y x T's. C Fpg X s, is trivial.
Then there exists a variety F over K such that

e X X F xgS

e there exists I'r C Fp; over 'k such that the base-change by I's — T'x of the

monomorphism above is the original monomorphism I'y C I'pz.

Proof. From the left exact functors Homr, (—, Outr, (I'x), Homr, (-, Outr, (Cpy), we

obtain the proof chasing the following diagram of extensions;

FF*)FPn FXHFPS@ FX'XFSRHFP;,JXFSR
Ik — Tk s ——=1TI% Lsp —T's¢

Definition 3. Let K be a sub-p-adic field. Let I'x be the absolute Galois group of the
function field of a variety X over K. 'y is said to be uni-rational if there exists an open
subgroup Ty of I'x such that Ty ~T'p, Xr, -+ Xr, I'p.. (cf.[Ko])

Question 1. e [f for each open subgroup I'y of I'x the connected component con-
taining the identity of Out(X) consists of just one element, then is X of general
type?

o [f there exists an open subgroup 'y such that Out(I'y) is an abelian variety of
mazximal dimension, then is k(X) = 0 and is the converse valid? (cf.[Mat], [Mats],
[Kaw], [I])
4. BOUNDEDNESS OF SECTIONS
We shall show the following
Theorem 8. Let f : X — C be a fibre space with the general generic fibre of general

type from a projective smooth variety X onto a curve C over the complex number field.
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Assume there exists a set of sections of X/C which becomes Zariski dense in X. Then
var(X/C) = 0.

Proof. We refer to the case that X is a projective smooth surface S with a canonical
divisor Kg. Let f:.S — C be a fibre space with a general fibre of genus g > 2. Assume
S has no (—1)-curves contained in a fibre S/C. Let M be the function field of C' and
M the algebraic closure. Let P be an algebraic point of S(M) and Ep the curve on

S associated to P which is surjective onto C'. We denote by E}°" the normalization of
Ks/c - Ep

Ep. The geometric canonical height hy(P) is hyx(P) = (P) M

2 EnOT _ 2
logarithmic discriminant d(P) is d(P) = [}q\;(;)?m.

Szpiro and Esnauld-Viehweg proved the following estimates of the geometric canonical
height hy (P) ([Szp], [EV], [MP], [Mol], [Mo2]), respectively;

The geometric

hic(P) <8 x 3% (g —1)*(d(P)/3' + s +1+1/3%
hi(P) < 2(2g — D2(d(P) + s).

Here s is the number of singular fibres of S/C. The problem is birational. We hence
have another fibre space f : X — C which is birationally equivalent to the original one.
f: X — C factors through X — Z where Z is a projective smooth variety of dim X — 1.
By the formula x(X) < k(Xj;) +dim Z, x(Xj;) = 1. Let Y be a ramified cover of Z and
projective smooth which is of general type. Take a pull-back of X along Y — Z and
denote by X’ a semi-stable reduction of the pull-back.

~— X'

AN

X
i
£
We shall show (Kx - Ep,) < Nx for some number Nx and for any point P, € U(M)
of bounded degree where U is open in X. Let P, be a point of X(M). Let @, be a
point of X’ over a point Py of X, @,|Y the image of @, of X" and P,|Z the image of
P, of X, respectively. We claim that there exists a number Ny such that Ky - Ep, <
Nx[M(P,) : M]. By assumption of recurrence for dimension there exists a number
such that (Eg,y - Ky) < Ny[M(Q,]Y) : M] for any point Q,]Y € V(M) where V
is an open sub-variety of Y. We have a hyper-surface B of Y such that X’/Y has
smooth fibres of genus g over Y \ B. Since Y is of general type we find a number m

such that B < mKy. For any curve Eg,|y which is not contained in mK — B, we have
Eq,v B < Eg,)y-mKy <mNy-[M(Q,|Y) : M]. If we pull back X'/Y along Eq,)y C Y,
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we get a surface over a curve Eg, |y ,i.e., X'/Y|Eq,|y. We apply Esnault-Viehweg’s lemma
to these fibre spaces. Hence
(X'/Y|Eq,v) - Eq,v
[M(Qx) : M]
Here s < mNy - [M(Qyy) : M]. For almost all curves Ep, we have Ep, - Kx/[M(P)) :
M| < Eq, - Kx//[M(Q,) : M]. Since it is enough to consider all the points of bounded
degree, we get (Kx - Ep,)/[M(Py) : M] < Nx for some number Ny and for any point

P, € U(M) where U is open in X. Hence we obtain the set of sections of X/C which is
dense in X and which is bounded. We already know that var(X/C) =0 from [Km]. O

< 2(29 — 1)*(d(P) + s).
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