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On numerical types of plain algeblaic curves with the
invariant w

Shigenori  Terashima’

1 Preliminary

Let C be a curve on a non-singular rational surface W. We start with recalling some defini-
tions on the birational geometry of pairs (W, C').

Definition 1.1 (birational equivalence between pairs)

Let C; and C5 be two curves on non-singular rational surfaces Wi and W, respectively. Suppose
that there exists a birational transformation h : Wy — W,. We say that h is a birational
transformation from (Wy, C) to (W, Cy), if the proper image h[Cy] of C; by h coincides with
Cy. We say that the pairs (W7, C}) and (W5, Cy) are birationally equivalent when there exists a
birational transformation h : (Wy,Cy) — (Wa, Cy). In this case, we write (Wy, Cy) ~ (Wa, Cy).

Definition 1.2 (relatively minimal pairs)
A non-singular pair (S, D) is said to be relatively minimal when every exceptional curve E of
the first kind on S with £ # D satisfies £ D > 2.

It is known that every pair (W, C') has a resolution to a non-singular pair (5, D). So we have
much interest in non-singular pairs (5, D) which is relatively minimal.

Definition 1.3 (Hirzebruch surface ;)
We define surfaces ¥, as follows for b > 0:

Yy = {((zo : x1 : 1), (o : v1)) 219} = 2oyl C P2 PL
These surfaces are non-singular rational surfaces, which we call Hirzebruch surfaces.

It is well known that every curve C' on P? is linearly equivalent to dL, where L is a projective
straight line on P2, and d is the degree of C.

It is also well known that every curve C' on ¥, is linearly equivalent to o o +¢eF,, where
is a section of which the self intersection number is —b and p~'(c) is a fiber, for o and e > 0.
Here, c is a point on P! and p is the natural projection from X to P!

In that follows, we describe the numerical types of curves C' on P? as [d; vy, v1, . . . , 1], where
Vg > v1 > ... > v, are multiplicities of singular-points Py, Py, ..., P. on C including infinitly
near singular points.

Similarly, the numerical types of curves C' on ¥, would be described as [0 xe, b; vy, v, ..., Vp].
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Definition 1.4 (#minimal model)
The pair (,, C) is said to be #minimal when ¢ > 21, and following conditions are satisfied:

(1) e > o, when b =0,
(2) e—o>v,whenb=1and r >0,
(3) e—0>2,whenb=1and r=0.

Theorem 1.5 (Titaka)
If k[D] > 0, every non-singular pair (S, D) has a birational regular map to either (P?, D’) or a
minimal resolution of a #minimal(%,, C'), where D’ is a non-singular plane curve.

2 The invariant w

The adjunction formula D (D 4 K) = 2g — 2. indicates that D 4+ Z is closely related to g.
Note that ¢ is important but g expresses only the character of curves. So we need an invariant
which embodies the properties of the pair (S, D). We recall the old theorem.

Theorem 2.1 (Coolidge)
D is a rational curve and |D +2K| =0 = (S,C) ~ (P?, L)

Next, we investigate the property of curves when |D + 2K | # (). We list several basic results.

Theorem 2.2 (Iitaka2)
If 0 > 4, then D + 2K is nef, where the pair (S, D) is minimal.

By the Theorem above, we have D (D+2K) > 0. Defining ato be D (D+2K) = 4g—4— D?,
O.Matsuda[3] succeeded in enumerating the possible numerical types of #minimal models with
a < 6.

The purpose of this paper is to introduce another invariant w which is related to D + 3K and
to enumerate the possible types with small w.

Definition 2.3
Define w to be §(D +3K) D. Then w is 3g — 3 — D?.

3 Calculating w of (P, D)

By the Theorem 1.5, we know that every non-singular pair has a birational regular map to
either a non-singular pair (P2, D) or a minimal resolution of a #minimal (3, C). First, we
investigate the relation between w and (P2, D).

In the cace of (P2, D), D ~ dL and K ~ —3L, where d is the degree of the curve D. We
have D + 3K = (d — 9)L and

2w=D (D+3K)=dd—9).
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Therefore, minimum value of w is attained at d = 4 or 5.

When d = 2, k[D] = —oo. When d = 3, the curve D is an elliptic curve and w = —9. When

d=4or 5, w=—10 and this is the minimum w. Furthermore, we can calculate w as follows:
d=6 & w=-9,
d=7 & w=-1,
d=8 & w=-4,
d=9 & w=0,
d=10 & w=35,
d=11 & w=11,

4 #minimal models of (¥;, C) with small w

Next, we investigate the properties of w for #minimal models (¥;, C'). In order to determine
pairs which have the smallest w as the starting point of enumerating the types of #minimal
models, we recall a theorem concerning D + 3K.

Theorem 4.1 (Iitaka)
When the pair (S, D) is minimal and o > 6, |D + 3K| # ), except for the types [6  8,1;272],
where t9 > 0.

In that follows, we assume that (S, D) is minimal. Next proposition is well known.

Proposition 4.2
If o =2, then k[D] =0, 1.

In the case when x[D] = 0,1, the types of the pairs have already been enumerated. Hence,
in that follows, we assume that k[D] = 2.

Proposition 4.3
If w <0, then vy < 2.

(proof) First, we suppose v; > 3, for ¢ > 214 by #minimality. By Theorem 4.1, if ¢ > 6,
there exists an effective divisor I' which is linearly equivalent to D + 3K except for the types
[6x8, 1;2'2]. But this is the exceptional case, because the pairs have only double points. Suppose
that 2w = (D+3K) D < 0. Since |[D+3K| # (), we take a member I', which satisfies ' D < 0.
Then I is written as [V +aD(a > 0), where I is another effective divisor. It follows that I' — D
is effective. However, I' — D is linearly equivalent to 3K, which induces that [3K| # (). This
contradicts the fact that the Kodaira dimension of a rational surface is —oo. This completes
the proof.
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If the type of the pairs is [0 % e, b; vy, v, ..., V], then we have
D? = 20e — bo? — ZUJZ
j=1

and
g=(e~1)(o -1~ 2§ us 2l

j=1
Let m be the maximal multiplicty of singular points on the curve C. Let t; denote the number
of the singular points which have the multiplicity i. By Proposition 4.3, when w < 0, we obtain

D? = 20e —bo? — 4t,.

o(c—1)b
g = -2y,
Then,
w = 3g—3-—D?
3
= 3(6—1)(0—1)—§a(a—l)b—3—206+b02+4t2
1, 5, 3
= eo0—3e—30— =bo” + =bo + ts.
2 2
Therefore,

(0 —3)(2e —bo — 6) + 2ty = 2(w +9).
Lemma 4.4
If k[D] = 2, then 2e — bo — 6 > 0.

(proof)For k[D] = 2, we have ¢ > 3 by Proposition 4.2.
1.In the case when b = 0, we have 2e — bo — 6 = 2¢ — 6. By ¢ > 3 and #minimality condition
e > 0, Lemma holds.
2.In the case when b = 1, we have 2¢ —boc — 6 = 2¢ — o — 6. By 0 > 3 and #minimality
condition e — o > 1,

2e—0—-6>2c+2)—c—6=0—2>0.
3.In the case when b > 2, rewriting 2e — bo — 6 as (e — bo) + (e — 6), we have the inequality by
the known property e — bo > 0 and the condition ¢ > 3.

Proposition 4.5
If k[D] =2 and w < 0, then

(0 —3)(2e —bo —6) + 2ty =2(w+9) > 0.
Therefore, w > —9.

(proof)By Proposition 4.2, the Lemma above and Proposition 4.3, the inequality has been
established.

In that follows, we shall enumerate the possible numerical types of pairs which have small w,
ie. w=-9-8 ...
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5 Case w= -9

By Proposition 4.5, if w = —9, then ¢, = 0.
1.In the case b = 0, we have 2¢ —boc —6 =2¢ — 6. Byoc >3 and e > 0, if 0 > 4, e is also
gleater than 3 and 2e — 6 # 0. So 0 = 3 and the possible types are

[3%e,0;1], where e=3+u (u>0).

2.In the case b = 1, we have 2e — bo — 6 = 2¢ — 0 — 6. By 0 > 3 and #minimality condition
e—o > 1,if 0 > 4, e must be gleater than 6. But positive integer solution of 2e — o — 6 =0
satisfying e — ¢ > 1 does not exist. Hence o = 3 and the possible types are

[Bxe,1;1], where e=5+u (u>0).

3.In the case b > 2, we rewrite 2¢ — bo — 6 as (e — bo) + (e — 6). By the known condition
e—bo >0,if 0 > 4, then (e —6) > (bo —6) > (2 4 —6) > 0. Therefore, 0 = 3 and the
possible types are

[3xe,b;1], where e =3b+u (u>0,b>2).

6 Case w= —S8

By Proposition 4.5, we have
(0 —3)(2e —bo — 6) + 2ty =2(w+9) = 2.

By Proposition 4.2 and Lemma 4.4, we have t, = 0, 1. First, we prepare another Lemma.

Lemma 6.1
If k[D] =2 and ¢ > 4, then
oc—3<2e—bo—6.

(proof)1. In the case when b =0,
2¢e—boc—6—-(0—-3)=2e—0—-3>20—0—-3=0—-3>0.
2. In the case when b = 1, by the #minimality condition e — o > 2,
2¢e—bo—6—(0c—3)=2e—20—-3>0.
3. In the case when b > 2, by the condition e — bo > 0 and ¢ > 4, we have e — ¢ > 4. Then

2¢e—bo—6—(0—3)=e—bo+e—0—3>0.
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6.1 Casety =0

1. In the case when b = 0, we have (¢ — 3)(e — 3) = 1. By the possible factorization of the
right side and the assumption of s[D] > 2, i.e. ,o > 3, the only possible type is

[44,0;1].

2. In the case when b = 1, we have (0 — 3)(2e — o — 6) = 2. By the same factorization above
and Lemma 6.1, we have 0 = 4. If ¢ = 4, then e = 6. So the possible type is

[4%6,1;1].

3. In the case when b > 2, we have (0 — 3)(2e — bo — 6) = 2. By the same factorization above
and Lemma 6.1, we have 0 = 4. It follows that 2e — 4b = 8. By the condition ¢ — bo > 0, i.e.
e > 4b, the only possible solution of b is 2 and hence e = 8. So the type becomes

[4%8,2;1].

6.2 Casety=1

We have (0 — 3)(2¢ — bo — 6) = 0. But, by the #minimality condition ¢ > 214 = 4 and
Lemma6.1, there exist no solution of ¢,e. This implies that when t = w + 9, there exist no
#minimal model. So we obtain the following

Proposition 6.2
If kD] =2 and —8 < w < 0, then t, < w + 8.

7 Case w=—-7
By Proposition 4.5, we have
(0 —3)(2e —bo — 6) + 2ty = 4.

By Proposition 4.2, Lemma4.4 and Lemma6.1, we have t, = 0, 2.

7.1 Case ty, =0

1. In the case when b = 0, we have (0 — 3)(e — 3) = 2. By the possible factorization of the
right hand side, the assumption of k[D] > 2 i.e. o > 3, and #minimality condition e > o, the
only possible type is

[4%5,0;1].
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2. In the case when b = 1, we have (0 — 3)(2e — o — 6) = 4. By the same factorization above
and Lemma 6.1, we have 0 = 4. If 0 =4, then e = 7. So the possible type is

[4%7,1;1].

3. In the case when b > 2, we have (0 —3)(2e —bo — 6) = 4. By the same factorization above
and Lemma 6.1, we have 0 = 4. It follows that 2e — 4b = 10. By the condition e — bo > 0, i.e.
e > 4b, the only possible solution of b is 2 and it follows that e = 9. So the type is

[4%9,2;1].

7.2 Casety=1

We have
(0 —3)(2e — bo — 6) = 2.

Noting that #minimality condition in the case b = 1 with only double points is the same as the
case when C' is non-singular, we can use the same solution of ¢, e and b in the case of section

6.1. So the possible types are

[4%4,0;2],[4%6,1;2], [4%8,2: 2.

8 Case w=—6

By Proposition 4.5, we have
(0 —3)(2e — bo — 6) + 2ty = 6.

By Proposition 4.2 and Lemma 4.4, we have t, =0, 1, 2.

8.1 Casety, =0

1. In the case when b = 0, we have (0 — 3)(e — 3) = 3. By the possible factorization of the
right side, the condition ¢ > 3, and #minimality condition e > ¢, the only possible type is

[4%6,0;1].

2. In the case when b = 1, we have (0 — 3)(2e — 0 — 6) = 6. By the same factorization above
and Lemma 6.1, we have 0 =4 or 5. If 0 =4, then e = 8. If ¢ = 5, then e = 7. So the possible

types are
[4x8,1;1],[5*7,1;1].

3. In the case when b > 2, we have (0 —3)(2e —bo —6) = 6. By the same factorization above
and Lemma 6.1, we have ¢ = 4,5. If ¢ = 4, then 2e — 4b = 12. By the condition e — bo > 0,
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i.e. e > 4b, the possible solutions of b are 2,3 and it follows that e = 10,12, respectively. If
o = 5, then 2e — 5b = 9. There exist no solutions of b under the condition e — bo > 0, i.e. |
e > bb. So the types are

[4%10,2;1],[4 %12, 3;1].

8.2 Casety=1

We have
(0 —3)(2e — bo — 6) = 4.

We can use the same solution of g, e and b in the case of section 7.1. So the possible types are

[4%5,0;2],[4%7,1;2], [4%9,2:2].

8.3 Casety=2

We have
(0 —3)(2e — bo — 6) = 2.

We can use the same solution of o, e and b in the case of section 6.1. So the possible types are

[4%4,0;2%],[4%6,1;2%], [4 % 8,2; 2%

9 C(Case w=-)

By Proposition 4.5, we have
(0 —3)(2e — bo — 6) + 2t, = 8.

By Proposition 4.2 and Lemma 4.4, we have t =0, 1,2, 3.

9.1 Casety =0

1. In the case when b = 0, we have (0 — 3)(e — 3) = 4. By the possible factorization of the
right side, the condition ¢ > 3, and #minimality condition e > o, we have ¢ = 4,5 and it
follows that e = 7,5, respectively. So the possible types are

[4%7,0;1],[5*5,0;1].

2. In the case when b = 1, we have (0 — 3)(2e — o — 6) = 8. By the same factorization above
and Lemma 6.1, we have 0 = 4 or 5. If 0 = 4, then e = 9. But if ¢ = 5, then e is not an
integer. So the only possible type is

[4%9,1;1].
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3. In the case when b > 2, we have (0 — 3)(2e — bo — 6) = 8. By the same factorization above
and Lemma 6.1, we have ¢ = 4,5. If 0 = 4, then 2e — 4b = 14. By the condition e — bo > 0,
i.e. e > 4b, the possible solutions of b are 2,3 and it follows that e = 11,13, respectively. If
o = 5, then 2e — 5b = 10. By the condition e > 50, the only solutions of b is 2 and it follows
that e = 10. So the types are

[4%11,2;1], [4%13,3;1],[5 % 10,2; 1].

9.2 Casety=1

We have
(0 —3)(2e — bo — 6) = 6.

We can use the same solution of o, e and b in the case of section 8.1. So the possible types are

[4%6,0:2],[48,1;2],[5%7,1;2], [4 % 10,2; 2], [4 % 12, 3; 2].

9.3 Casety =2

We have
(0 —3)(2¢ — bo — 6) = 4.

We can use the same solution of o, e and b in the case of section 7.1. So the possible types are

[4%5,0;2%),[4%7,1;2%], [4%9,2;2%.

9.4 Case ty =3

We have
(0 —3)(2e — bo — 6) = 2.

We can use the same solution of o, e and b in the case of section 6.1. So the possible types are

[4%4,0;2%],[4%6,1;2%, [4%8,2;2%.

10 Case w=—4

By Proposition 4.5, we have
(0 —3)(2e — bo — 6) + 2t, = 10.

By Proposition 4.2 and Lemma 4.4, we have t, = 0,1, 2, 3,4.
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10.1 Case ty =0

1. In the case when b = 0, we have (¢ — 3)(e — 3) = 5. By the possible factorization of the
right side, the condition ¢ > 3, and #minimality condition e > o, we have ¢ = 4 and it follows
that e = 8. So the only possible type is

[4%8,0;1].

2. In the case when b = 1, we have (¢ — 3)(2¢ — 0 — 6) = 10. By the same factorization
above and Lemma 6.1, we have o = 4,5 and it follows that e = 10, 8, respectively. So the only
possible types are

[4%10,1;1],[5%8,1;1].

3. In the case when b > 2, we have (o —3)(2¢ —bo —6) = 10. By the same factorization above
and Lemma 6.1, we have 0 = 4,5. If 0 = 4, then 2e — 4b = 16. By the condition e — bo > 0,
i.e. e > 4b, the possible solutions of b are 2, 3,4 and it follows that e = 12,14, 16, respectively.
If 0 = 5, then 2¢ — 5b = 9. In this case, there exists no solutions of b under the condition
e —bo > 0ie. e>5b. So the types are

[4%12,2;1], [4 % 14, 3; 1], [4 16, 4; 1].

10.2 Case ty =1

We have
(0 —3)(2e — bo — 6) = 8.

We can use the same solution of o, e and b in the case of section 9.1. So the possible types are

[4%7,0:2],[5%5,0;2], [4%9,1;2], [4% 11,2 2], [4 % 13,3: 2], [5 * 10, 2; 2].

10.3 Case ty =2

We have
(0 —3)(2e — bo — 6) = 6.

We can use the same solution of ¢, e and b in the case of section 8.1. So the possible types are

[4%6,0;2%],[4%8,1;2%,[5%7,1;2%], [4 % 10,2; 2%], [4 % 2, 3; 27].

10.4 Case ty =3

We have
(0 —3)(2e — bo — 6) = 4.

We can use the same solution of o, e and b in the case of section 7.1. So the possible types are

[4%5,0;2%, [4%7,1;2%], [4%9,2;2%.
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10.5 Case ty =4
We have
(0 —3)(2e — bo — 6) = 2.
We can use the same solution of o, e and b in the case of section 6.1. So the possible types are

[4%4,0;2%,[4%6,1;2, [4 % 8,2;2%].

11 Case w= -3

By Proposition 4.5, we have
(0 —3)(2e — bo — 6) + 2t, = 12.
By Proposition 4.2 and Lemma 4.4, we have t; = 0,1,2,3,4,5.

11.1 Case ty =0

1. In the case when b = 0, we have (¢ — 3)(e — 3) = 6. By the possible factorization of the
right side, the condition ¢ > 3, and #minimality condition e > o, we have ¢ = 4,5 and it
follows that e = 9, 6, respectively. So the possible types are

[4%9,0;1],[5 6,0 1].

2. In the case when b = 1, we have (¢ —3)(2e — o — 6) = 12. By the same factorization above
and Lemma 6.1, we have ¢ = 4,6 and it follows that e = 11,8, respectively. So the possible
types are

[4+%11,1;1],[6*8,1;1].

3. In the case when b > 2, we have (0 — 3)(2e — bo — 6) = 12. By the same factorization
above and Lemma 6.1, we have 0 = 4,5,6. If 0 = 4, then 2¢ — 4b = 18. By the condition
e —bo > 0, i.e. e > 4b, the possible solutions of b are 2,3,4 and it follows that e = 13,15, 17,
respectively. If ¢ = 5, then 2e¢ — bb = 12. By e > 5b, the only solution of b is 2 and it follows
that e — 11. If ¢ = 6, then 2e — 60 = 10. In this case, there exist no solutions of b under the
condition e — bo > 0 i.e. e > 6b. So the types are

[4%13,2;1],[4 % 15,3; 1], [4 % 17,4; 1], [5 = 11, 2; 1].

11.2 Casety =1

We have
(0 —3)(2e — bo — 6) = 10.

We can use the same solution of o, e and b in the case of section 10.1. So the possible types are

[4%8,0:2],[4%10,1;2], [5 % 8,1;2], [4 % 12,2 2], [4 % 14, 3; 2], [4 % 16, 4; 2].
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11.3 Case ty =2

We have
(0 —3)(2e — bo — 6) = 8.

We can use the same solution of g, e and b in the case of section 9.1. So the possible types are

[4%7,0;2%,[5%5,0;2%], [4%9,1;22], [4 % 11,2; 2%, [4 * 13, 3; 2%, [5 10, 2; 27].

11.4 Case ty =3

We have
(0 —3)(2¢ — bo — 6) = 6.

We can use the same solution of o, e and b in the case of section 8.1. So the possible types are

[4%6,0;2%],[4%8,1;2%,[5%7,1;2%, [4 % 10,2; 2%, [4 % 2, 3; 2°].

11.5 Case ty =4

We have
(0 —3)(2e — bo — 6) = 4.

We can use the same solution of o, e and b in the case of section 7.1. So the possible types are

[4%5,0;2%,[4%7,1;2Y,[4%9,2;2%].

11.6 Casety =5

We have
(0 —3)(2¢ —bo —6) = 2.

We can use the same solution of o, e and b in the case of section 6.1. So the possible types are

[4%4,0;2°],[4%6,1;2°, [4 % 8,2;2°].

12 Case w= -2

By Proposition 4.5, we have
(0 —3)(2e — bo — 6) + 2t = 14.

By Proposition 4.2 and Lemma 4.4, we have t, =0, 1,2, 3,4,5,6.
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12.1 Case ty =0

1. In the case when b = 0, we have (¢ — 3)(e — 3) = 7. By the possible factorization of the
right side, the condition ¢ > 3, and #minimality condition e > o, we have ¢ = 4 and it follows
that e = 10. So the only possible type is

[4 %10, 0; 1].

2. In the case when b = 1, we have (¢ —3)(2e —o —6) = 14. By the same factorization above
and Lemma 6.1, we have ¢ = 4,5 and it follows that e = 12,9, respectively. So the possible
types are

[4%12,1;1],[5%9,1;1].

3. In the case when b > 2, we have (o —3)(2¢ —bo —6) = 14. By the same factorization above
and Lemma 6.1, we have 0 = 4,5. If 0 = 4, then 2e —4b = 20. By the condition e —bo > 0, i.e.
e > 4b, the possible solutions of b are 2,3, 4,5 and it follows that e = 14, 16, 18, 20, respectively.
If o = 5, then 2e — 5b = 13. Under the condition e > 5b, there exist no solutions of b in this
case. So the types are

[4%14,2; 1], [4 = 16, 3; 1], [4 * 18, 4; 1], [4 % 20, 5: 1].

12.2 Case ty =1

We have
(0 —3)(2e — bo — 6) = 12.

We can use the same solution of o, e and b in the case of section 11.1. So the possible types are

[4%9,0:2],[5%6,0:2], [4%11,1;2],[6 % 8,1;2], [4 13,2; 2], [4 % 15,3: 2], [4 % 17, 4; 2], [5 = 11, 2; 2].

12.3 Case ty =2

We have
(0 —3)(2e — bo — 6) = 10.

We can use the same solution of o, e and b in the case of section 10.1. So the possible types are

[4%8,0;27], [4 % 10,1; 2%, [5 * 8, 1; 2%, [4 * 12,2;2%], [4 * 14, 3;2?], [4 * 16, 4; 2?].

12.4 Case ty =3

We have
(0 —3)(2e — bo — 6) = 8.

We can use the same solution of o, e and b in the case of section 9.1. So the possible types are

[4%7,0;2%,[5%5,0;2%], [4%9,1;2%, [4 % 11,2;2°],[4 % 13, 3; 2], [5 % 10, 2; 2°].
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12.5 Case ty =4

We have
(0 —3)(2e — bo — 6) = 6.

We can use the same solution of g, e and b in the case of section 8.1. So the possible types are

[4%6,0;2%],[4%8,1;2Y, [5%7,1;2%, [4 % 10,2; 2%], [4 % 2,3; 2]

12.6 Casety =5

We have
(0 —3)(2¢ — bo — 6) = 4.

We can use the same solution of o, e and b in the case of section 7.1. So the possible types are

[4%5,0;2%),[4%7,1;2°],[4 % 9,2;2°).

12.7 Case ty =6

We have
(0 —3)(2e — bo — 6) = 2.

We can use the same solution of o, e and b in the case of section 6.1. So the possible types are

[4%4,0;2%,[4%6,1;2°, [4%8,2;2°].

13 Case w=—1

By Proposition 4.5, we have
(0 —3)(2e — bo — 6) + 2ty = 16.

By Proposition 4.2 and Lemma 4.4, we have t = 0,1,2,3,4,5,6,7.

13.1 Case ty =0

1. In the case when b = 0, we have (0 — 3)(e — 3) = 8. By the possible factorization of the
right side, the condition ¢ > 3, and #minimality condition e > o, we have o = 4,5 and it
follows that e = 11,7, respectively. So the possible types are

[4%11,0;1],[5 % 7,0; 1].
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2. In the case when b = 1, we have (0 —3)(2¢ — 0 — 6) = 16. By the same factorization above
and Lemma 6.1, we have ¢ = 4 and it follows that e = 13. So the only possible type is
[4%13,1;1].

3. In the case when b > 2, we have (0 —3)(2e —bo —6) = 16. By the same factorization above
and Lemma 6.1, we have ¢ = 4,5. If ¢ = 4, then 2e — 4b = 22. By the condition e — bo > 0,
i.e. e > 4b, the possible solutions of b are 2, 3,4 and it follows that e = 15,17, 19, respectively.
If 0 =5, then 2e — 50 = 14. By e > 5b, the only solution of b is 2 and it follows that e = 12.
So the types are

[4%15,2;1],[4%17,3;1],[4 % 19,4;1],[5 % 12,2; 1].

13.2 Case ty =1

We have
(0 —3)(2¢ — bo — 6) = 10.

We can use the same solution of ¢, e and b in the case of section 12.1. So the possible types are

[4%10,0;2], [4%12,1;2], [5%9,1;2], [4 % 14,2; 2], [4 % 16, 3; 2], [4 * 18, 4; 2], [4 * 20, 5; 2].

?

13.3 Case ty =2

We have
(0 —3)(2e — bo — 6) = 12.

We can use the same solution of o, e and b in the case of section 11.1. So the possible types are

[4%9,0;2%], [5%6, 0; 2%], [4%11,1;2%], [6%8, 1;2%], [4%13,2; 2%], [4%15, 3; 27|, [4%17, 4; 2%, [5*11, 2; 27].

13.4 Case ty =3

We have
(0 —3)(2e — bo — 6) = 10.

We can use the same solution of ¢, e and b in the case of section 10.1. So the possible types are

[4%8,0;2%], [4 % 10,1;2%],[5 % 8, 1; 2%, [4 * 12,2; 2%, [4 * 14, 3;2°], [4 * 16, 4; 2°].

13.5 Case ty =4

We have
(0 —3)(2e — bo — 6) = 8.

We can use the same solution of o, e and b in the case of section 9.1. So the possible types are

[4%7,0;2%,[5%5,0;2Y, [4%9,1; 2%, [4 % 11,2;2%], [4 % 13,3; 2], [5 * 10, 2; 2%].
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13.6 Casety =5

We have
(0 —3)(2e — bo — 6) = 6.

We can use the same solution of g, e and b in the case of section 8.1. So the possible types are

[4%6,0;2°],[4%8,1;2°,[5%7,1;2°], [4 % 10,2; 2°], [4 % 2,3; 2°].

13.7 Case ty =6

We have
(0 —3)(2¢ — bo — 6) = 4.

We can use the same solution of o, e and b in the case of section 7.1. So the possible types are

[4%5,0;2%,[4%7,1; 2%, [4 % 9,2; 29.

13.8 Casety =7

We have
(0 —3)(2e — bo — 6) = 2.

We can use the same solution of o, e and b in the case of section 6.1. So the possible types are

[4%4,0;27],[4%6,1;27], [4 % 8,2;27].
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