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HIGHER DIMENSIONAL DIOPHANTINE PROBLEMS

KAZUHISA MAEHARA*

ABSTRACT. In this article we treat an analogue of higher Modell conjecture over function
field([No], [Km]). Furthermore we apply a similar argument to the arithmetic case([F],
[L]), [Mot]).

1. INTRODUCTION

We shall prove a weak version of the following conjectures proposed by Lang and
Bombieri([L]):

Conjecture 1. Let K be an arithmetic field and X a variety defined over K. Assume
that X be a variety of general type. Then it has no dense set of K-rational points in X.

When dim X = 1, it is the famous Faltings theorem([F]).
There is an analogue of the conjecture, which is proposed by Noguchi([No], [Km)]):

Conjecture 2. Let X and S be algebraic varieties over the field of the complex numbers.
Assume that X/S be a fibre space with the geometric generic fibre of general type. If X/S

has a dense set of rational sections in X, then var(X/S) = 0.

2. GEOMETRIC CASE

Lemma 1. Let k be a field of characteristic 0 and C a non singular curve over k. Let
f X — C be a projective surjective morphism between non singular varieties over k with
connected fibres and let m : P(QF") — X be the structure morphism of projective bundle
where n = dim X. Then

(1) there exists an exact sequence
0— f"Qc — Qx — Qx/c— 0
(2) there exists an epimorphism onto the fundamental invertible sheaf.
QY — Op(1)

(3) if X is of general type, the fundamental invertible sheaf Op(1) is big.
(4) if QZ" is effective, the fundamental invertible sheaf Op(1) is effective.
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Proof. (1) Tt is well-known.
(2) See EGAT ([I].

(3) Since there exists an inclusion wy C Q%" we have
Twx — QY — O0p(1)
and its adjunction
wWx — W*Op(l) = Q;eén

Since wy is big and Op(1) is m-ample, there exists a number b such that W’ @Op(1)
is big. Hence Op(b+ 1) is big. Thus Op(1) is big.
(4) Obvious.
O

Lemma 2. Suppose the genus g(C') > 2. Let wx be the canonical invertible sheaf over X
of general type. Let A = w3’ @ Op(1) over P(QS™) such that Op(1) C A for some b > 0.
Then there exists the following commutative giagram:

T frSIOET > SO —— Op(l)

| |

m*me A A

| |

W*Q?}n —— Op(l)

W*f*Q%n

Proof. (1) Let g = mo f. Op(1) ® g*wg&™ ™ is effective. Hence Op(2) @ wi ™™ is big
because Op(1) is big.
(2) There exists a number £y > 1 such that

Op CA®g'wi™" C @ (0p(2) ® gwg™)
(3) Hence
gwi" C AC (Op(%o) & g*wg_n(zo_l))
(4) Thus
gwE" C A C Op(24y)
(5) Set ¢ = 2¢,.

It is important to show the commutativity of the diagram above.
We find another approach to this problem without using a Kaehler differential sheaf.
Let k be a field of characteistic 0. Let X and C be non singular projective varieties

of general type over k and f : X — C a projective surjective morphism with connected
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fibres. Let & = wx @ f*w%b for b > 1 and 7 : P(&) — X a projective bundle of relative
dimension 1 over X.

Lemma 3. Let X and C' be non singular projective varieties of general type over k and
f X — C a projective surjective morphism with connected fibres. Let Op(1) be the
fundamental invertible sheaf over P(&,). Then Op(1) is big. If wx is abundant, Op(1) is
abundant.

Proof. Since there exists a natural injection wx — &, we have m*wyxy — 71*& — Op(1).
Applying 7, to the homomorphism above, we get its non triviality. wy is big. There is a
number b such that Op(1) ® 7*ws’ is big. Hence O(b+ 1) D Op(1) @ m*wiP. It implies
Op(b+1) is big. Thus Op(1) is big. If wy is abundant, £ is abundant since we is ample.
Hence Op(1) is abundant. O

When wy is abundant and big, Op(1) is abundant and big. We have a natural surjective

homomorphism for sufficiently large ¢
Op @ H(P,0p({)) — Op({).
By this we have a morphism
P(&) — P(H(P,0p())).

We denote the image variety of this morphism by ) and the induced morphism by p :
P — Q. For sufficiently large ¢, @ is normal and its rational function field R(Q) is
algebraically closed in R(P).

Proposition 1. For a natural projection & — f*w%b there exists a section o0 : X — P
such that (& — f*w&) = (& — 0*Op(1)). o(X) C P is a hypersurface of codimension
1.

Proof. 1t is obvious from the universality of the fundamental sheaf Op(1).Recall that
dim P = dim X + 1. Hence o(X) is an effective divisor on P. O

Proposition 2. The morphism p : P — Q maps a divisor o(X) to a curve in Q, which

18 isomorphic to a curve C.

Proof. Since Op(1)|y(x) = T (F*wE)|ox) & ffws” over o(X), the restriction Op ®
HO(P,Op(f)) — Op(¢) to o(X) is as follows:

Oo(x) @ HY(P, Op({)) —= Op @ H(0(X), [*w&™)

i |

Op(0)]ox) frwght

Hence p maps o(X) onto a curve in () which is isomorphic to C. U
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Proposition 3. The hypersurface o(X) C P determines an effective divisor which is a
holomorphic section of Op(1) @ T*wy' i.e. Op(a(X)) = Op(1) @ T*wy'.

Proof. There is an isomorphism between P = P(wy @ f*w@’) and P’ = P(Ox ® wy' ®
f*w$P) and a natural isomorphism between fundamental sheaves Op (1) = Op(1) @7 wy .
There is a non void canonical homomorphism

Op =1 0x — 7(Ox ® ffuf @wy') — Op(l) = Op(1) @ Twy!

Hence an effective divisor determined by the above holomorphic section of Op(1) @ T*wy "

is a hypersurface o(X). O

Proposition 4. Let E be the exceptional divisor for a birational morphism p : P — Q.
Then the intersection number (E,By) > 0, where By is defined by &l|c, — Wc for
sufficiently large b.

Proof. Let G be a hyperplane in P(H(P, Op(¢))). Consider a curve p(X) which is isomor-
phic to C' in Q. Remember p(c(X)) = C. The pull-back p*G is a pull-back of a Cartier
divisor for p : P — @ C P(H°(P,0p(())), which is canonically isomorphic to Op(f).
Take a minimal mg such that moG contains a curve C'. Then p*m¢G = F + E. Here
p«E =0 and p.F' = mpG in the groups of cycle classes A,(Q) = Z.(Q)/Rat.(Q) where
Rat,(Q) is a group of rationally equivalent to zero cycles on ). From projection formula
we have (By, p*moG) = (p«Bx, moG) = mo(C,G). We claim (By, F) < (C,mG). The
restriction of p to B, is an isomorphism. Hence every intersection points between B and
F projects one to one into C, F' may intersects other points with the pull-back of C in Q).
Hence (By, F) < (C,myG). Therefore we have (B, E) = (B, p*moG) — (B), F) > 0. O

Proposition 5. We obtain the following inequality (Op(1) @ m*wy', By) > 0.

Proof. For any b, dim H(P, Op(c(X)) = dim H°(P, Op(1) @ m*wy') = dim H*(X, (wx @
frodt)@wy') = 1. Since we have (E, By) > 0and By C 0(X) C E, we get 0 < (E, By) =
(Ely(x), By) = (0(X), By) = (Op(1) ® 7wy, By). Remember o(X) is a member of the

complete linear system |Op(1) ® mwy'|. O
Proposition 6. (wx,Cy) < b(29(C) — 2) for sufficiently large b.

Proof. Since (Op(1)@7m*wy', By) > 0, (Op(1), By) > (7*wx, By). The fundamental sheaf
Op(1) is isomorphic to wgb >~ W& over By. Hence (Op(1), By) = b(wg,, By) = b(we, C) =
bdegwe = b(2¢9(C)—2). From projection formula, (m*wx, By) = (wx, mBy) = (wx, C)) <
b(29(C) — 2). O

Remark 1. Let wpjg be the relative dualizing sheaf for p : P — Q. Since wpq|,-1(c) =
wx/c, we have wpig = Op(—0(X)). Furthermore, 7" f* f, (WX/C)|B>\ — 7 wX/C’B/\
equivalent to f, (wX/C) — wX/C’|C)\ From the weak positivity of f. (wX/C) (1V], [Kaw], [?],
[Ws] ), deg(wx/cle,) = 0.
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Proposition 7. Let L be an ample invertible sheaf over X. Then (L,C)) is bounded

above except for Cy contained in a fixed hypersurface.

Proof. There exists a number a such that L — w%* is non trivial.Hence (L,C))

<
(W%, Cy) < ab(2g(C) — 2). O

Proposition 8. There exist a finite number of Hilbert polynomials (|GG|) such that for
1<i<M

Fy(m) = x(Cx, L®™)
Hence there exists a Hilbert polynomial Py(m) such that P;(m) = x(Cx, L®™) for curves

C\ which are dense in X.

Proof. Tt is well known that there correspond a finite number of Hilbert polynomials

X(Cy, L®™) where C) are bounded above for an ample invertible sheaf L over X. O

Proposition 9. There ezists a quasi-projective subvariety T of Hﬂbfj(m) (IGG]) such that
every poit of T corresponds to a section C C X. We have the following figure:

Cy C [y CXxT
t eT =T

Proof. There exists thew following diagram of the universal family I" over Hilbert scheme
Hilb% ™),

Cy cr C X x Hilb ™
t € Hilb% ™ — Hilb ™

We can construct a finite number of strata such that each poit of strata corresponds

to a section C. There exists a strata T" such that I' X pwm T — X is dominant by

Hilby/!
assumption.

O

Proposition 10. There exists a dominant rational map

CxV —X

|

C
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Proof. There exists an etale cover T — T such that I'rv — T” is a trivial product. Let V'

be a projective compactification of 7”. Then we get the following commutative diagram:

P‘T/

|

V—X

e

C

Q=<—X

g

Lemma 4. Let X/C be a fibre space with the generic general fibre of general type. If
V x C — X over C is dominant, X/C' is isotrivial.

Proof. Since X/C'is a fibre space with the generic general fibre of general type, we can
apply max,,~¢ x(det f*wg?;”c) > var(X/C). We may choose dimV = dim X — 1 by hy-
perplane cuts. Thus from the condition that V x C' — X is dominant, it follows that
r(det f*wf?}”c) = 0. Hence var(X/C) = 0, which means that X/C' is isotrivial. O

Remark 2. The abundance conjecture that for a variety of general type there exists a
minimal model variety with the canonical sheaf abundant was proved. We can apply it to
our case([Mats], [Kaw], [Ko], [MP]).

3. ARITHMETIC CASE

We refer the following definitions to Moriwaki([Mol], [Mo2], [Szp]).

Definition 1. A scheme is said to be an arithmetic variety(resp.a projective arithmetic
variety)if it is irreducible and reduced scheme and if it is flat and quasi-projective(resp.
projective) overSpecZ. An arithmetic variety is called generically smooth if the generic

fibre X Xgpecz Spec Q is smooth over Spec Q.

When X is a generically smooth projective arithmetic variety, we have the connected
components X, for all 0 : K — C of X(C) where we have the Stein factorization X —
Spec Ok — Spec Z for some algebraic field K and the ring of integers of K Og. We write
by p. : Spec C — X the poit X (C) and by ¢, : Spec C — Spec Ox,, its homomorphism
to the local ring. Let E be a locally free coherent sheaf over X. For each z € X(C),
E(z) = E,, ®oy,, C is given a hermitian inner product by C*°-hermitian metric h =

{hs}zex(c)- A couple E = (E, h) is called C*-hermitian locally free coherent sheaf.

Definition 2. A C*°-metric h is said to be of real type if it satisfies the conditionthat for
every x € X(C)

he(s®1,8 ®" 1) = h,(s®" 1,8 @ 1)
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for all s,s" € Ox,,. Here T is a complex conjugate and @ means a tensor product with
respect to ¢,.

Definition 3. Let X be a generically smooth arithmetic variety, Z a cycle of codimension
pand T a (p—1,p— 1)-current over X(C). A couple (Z,T) is said to be an arithmetic
cycle of codimension p. It is called of Green type if dd°(T) + 6z(c) is an element of
APP(X(C)).

We refer to the arithmetic projection formula([Mol]).

Proposition 11. Let f : X — Y be a projective morphism between generically smooth
arithmetic varieties. L = (L,h) a C*-hermitian invertible sheaf, s a non zero mero-
morphic section and n the generic point of X. Suppose that f(n) ¢ Supp(L, s) and that
Supp(f*L, f*s) and Z intersect properly. Then

F(fH(L), £75) - (2,7)) = (L,s) - f(2,T)

Let X be an arithmetic variety and F' a coherent sheaf. Let | - | be a set of norms

{| : ’F,x};vEX(C)

Definition 4. Let X be an arithmetic variety and F = (F,h) C*®-hermitian coherent

sheaf of real type which has a bounded norm.

(1) s € HY(X, F) is called a small section if ||8||sup < 1,
(2) s € H'(X,F) is called a strictly small section if ||$]|sup < 1,

Definition 5. Let X be an arithmetic variety and L = (L,h) a C-hermitian invertible
sheaf of real type.

(1) s € H'(X, L) is called a small section if ||s||sup < 1.

(2) s € H'(X, L) is called a strictly small section if ||]|sup < 1.

(3) A C=-hermitian invertible sheaf L = (L, h) is said to be vertically ample if an
invertible sheaf L is ample over X and the curvature of L is positive over X (C)
with respect to h.

(4) A L is said to be ample if it is vertically ample and if there exists a number n such
that L®™ is generated by all strictly small global sections.

(5) A L is said to be effective it L has a small global section.

(6) A L is said to be big if there exist an ample C=-hermitian invertible sheaf A and
a number n such that L®" @ A™" is effective.

(7) A L is said to be abundant there exist a morphism from X to an arithmetic variety
Y such that L®™ is isomorphic to the pull-back of an ample C™-hermitian invertible

sheaf over'Y for some n > 0.
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Proposition 12. A O%-hermitian invertible sheaf L = (L,h) is abundant if L®" is
generated by its global sections and the curvature of L is semi-positive over X (C) with

respect to h and if L®™ is generated by its strictly small sections for some n > 0.

Proof. It is enough to show L®" is generated by its strictly small sections. Since ||-||sup.x <

|| - ||v.sup for a strictly small global section of A over Y, it is obvious. O

Proposition 13. Let X be a projective smooth arithmetic variety and its Stein factoriza-
tion f : X — Spec Ok. Let wxo, be the relative dualizing sheaf and wx /0, = (Wx/0x,h)-
Suppose Wx o, 15 abundant, big and wo, is ample. Let & = Wx /0 D f*@%f{ and
7w P(&) — X the projective bundle over X. Then there exists a projective morphism
p:P(&) = P(H(X,5™(&,))).

Proof. Let Op(1) be the fundamental sheaf and its hermitian structure induced by 7*&, —
Op(1). Then Op@ H(X, S™E,) — Op(m) is surjective by assumption. Hence there exists
a projective morphism p : P(&) — P(H(X, S™(&,))). O

Proposition 14. Under the same assumption of the proposition above, we have

p((p"H, p*s) - (Ay,0)) = (H.5) - ps(Ay,0)

Here x € X(C) with [K(z): Q] < oo and s is a meromorphic section of H.

Proof. From the arithmetic projection formula we get it. O

Let Q be an image variety of a morphism p : P — P(H(P,Op(m))). For sufficiently
large m, a variety () is normal and p is a birational morphism. A natural surjective
homomorphism &, — w%i’{ determines a section o : X — P. Let wp/g denote the relative

dualizing sheaf for p: P — Q. We have wp/olo(x) = wWx/0x -

Proposition 15. The restriction p : P — Q to o(X) is a mapping from o(X) onto an
arithmetic curve which is isomorphic to Spec O.

Proof. Op(m) on a subvariety o(X) is isomorphic to w%i’{m, which is ample over Spec Ok.

Hence p maps o(X) onto an arithmetic curve Spec Oy O
Proposition 16. We have Op(1) = m*wx o, (0(X)) andwpjg = Op(—0(X))@7* f*w§’. .
Proof. There exists an exact sequence Op — 8b®w;(}0K — O p(1)®w;<}oK. Thus o(X) isa
divisor of global section of Op(1) ®W)_(}0K- We know wp/g = Op(—0(X)) +7r*f*w%f( since
wr/Qlo(x) = wxjo and o(X)|ox) = (Op(1) —wxjox)lox) = (1 +D)wo, —wx)lox) O
Proposition 17. For a point x € X(K) and its arithmetic curve (A,,0) we have for
A, Co(X)
p<((0"H, p"s) - (As,0)) = (H.5) - pu(As, 0)
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where p*H = Op(m). Furthermore let H' be the strict inverse image of H. Then Op(m) =
Op(H' +vo(X), where v > 0 is a number. We have deg ((0(X), s”) - (A;,0)) > 0, where

p*S _ Sl + 577.

Proof. Since deg ((H', ') - (A,,0)) < deg ((H, s) - (p.A,,0)) for A, C o(X) and p.((p*H, p*s)-
(A;,0)) = (H.5) - p.(Ag,0) by projection formula, we get deg ((o(X), p*s) - (Ag,0)) > 0
from (p*H, p*s) - (A;,0) = (H',s") - (A4,0) + (0(X),s”) - (A4, 0) O
Proposition 18. deg(wy) < (1 + b)deg(@o, ) for sufficiently large b.

Proof. Tt follows from deg(bwo, — Wx/0x) > 0. O

Proposition 19. Let L be a C™ hermitian ample invertible sheaf over X, There exists

a number £ such that @}8}5 > L.
Proof. Since wy is big, it is obvious. O

Definition 6. o
 dég(Lla,)
b [K(2),Q]

We apply the following lemma to the proposition above to get the conjecture.

hx

Lemma 5 (Northcott([Szp])). Let X be a projective arithmetic variety over Spec mathcalOg
and L an ample invertible sheaf over X. Let hy : X(K) — R denote the height function
associated to L. Then for any positive real numbers €, M, the set {x € X(K)|[K(z) :
Q] <€ hi(x) < M} is a finite set.

REFERENCES

[F] Faltings, G. Complements to Mordell. Rational points, (Bonn, 1983/1984), 203-227, Aspects Math.,
E6, Vieweg, Braunschweig, 1984.

[GG] Grothendieck, A., Fondaments de la géométrie algébrique., Secrétrariat mathématique, 11 rue Pierre
Curis, Paris 5e, p. 236 (1962).

[[] Ttaka, S., Introduction to birational geometry., Graduate Textbook in Mathematics, Springer-Verlag,
p- 357 (1976).

[Kaw] Kawamata, Y., Minimal models and the Kodaira dimension of algebraic fibre spaces., J. Reine
Angew. Math. 363, pp. 1-46 (1985).

[Ko] Kolldr, J., Rational curves on algebraic varieties., Springer, Berlin-Heiderberg-Newyork-Tokyo,
(1995)

[Km] Maehara, K., Diophantine problems of algebraic varieties and Hodge theory in International Sym-
posium Holomorphic Mappings, Diophantine Geometry and related Topics in Honor of Professor
Shoshichi Kobayashi on his 60th birthday., R.I.M.S., Kyoto University October 26-30, Organizer:
Junjiro Noguchi(T.I.T.), pp. 167-187 (1992).

[Mats] Matsuki, K., Introduction to the Mori Program., Universitext p. 468 Springer 2000

[Mol] Moriwaki, A., Arakelov Geometry, Iwanami Studies in Advanced Mathematics, p. 421 Iwanami
2008



ACADEMIC REPORTS Fac. Eng. Tokyo Polytech. Univ. Vol. 33 No.1 (2010) 39

[Mo2] Moriwaki, A., Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000),
101-142.

[MP] Miyaoka, Y., Peternel T., Geometry of Higher Dimensional Algebraic Varieties., DMV Seminar
Band 26 Birkhaiser p. 213 1997

[No] Noguchi, J., A higher dimensional analogue of M’s conjecture over function fields, Math.Ann.
258(1981), 207-212.

[Ws] Schmid, W., Variation of Hodge structure: the singularities of the period mapping., Inventiones
math., 22., pp. 211-319(1973).

[Szp] Szpiro, L. Séminaire sur les pinceaux arithmétiques: La conjecture de Mordell, Société
Mathématique de Frace. 127 p. 287(1985).

[L] Lang, S., Fundamentals of Diophantine Geometry. Springer-Verlag New York Berlin Heiderberg
Tokyo, p. 361(1983).

[V] Viehweg, E. Quasi-projective Moduli for Polarized Manifolds., Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3.Folge.Band 30, p. 320 (1991).





