
HIGHER DIMENSIONAL DIOPHANTINE PROBLEMS

KAZUHISA MAEHARA*

Abstract. In this article we treat an analogue of higher Modell conjecture over function
field([No], [Km]). Furthermore we apply a similar argument to the arithmetic case([F],
[L]), [Mo1]).

1. Introduction

We shall prove a weak version of the following conjectures proposed by Lang and

Bombieri([L]):

Conjecture 1. Let K be an arithmetic field and X a variety defined over K. Assume

that X be a variety of general type. Then it has no dense set of K-rational points in X.

When dimX = 1, it is the famous Faltings theorem([F]).

There is an analogue of the conjecture, which is proposed by Noguchi([No], [Km]):

Conjecture 2. Let X and S be algebraic varieties over the field of the complex numbers.

Assume that X/S be a fibre space with the geometric generic fibre of general type. If X/S

has a dense set of rational sections in X, then var(X/S) = 0.

2. Geometric case

Lemma 1. Let k be a field of characteristic 0 and C a non singular curve over k. Let

f : X → C be a projective surjective morphism between non singular varieties over k with

connected fibres and let π : P(Ω⊗n
X ) → X be the structure morphism of projective bundle

where n = dimX. Then

(1) there exists an exact sequence

0→ f ∗ΩC → ΩX → ΩX/C → 0

(2) there exists an epimorphism onto the fundamental invertible sheaf.

π∗Ω⊗n
X → OP (1)

(3) if X is of general type, the fundamental invertible sheaf OP (1) is big.

(4) if Ω⊗n
C is effective, the fundamental invertible sheaf OP (1) is effective.
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Proof. (1) It is well-known.

(2) See EGA1 ([I].

(3) Since there exists an inclusion ωX ⊂ Ω⊗n
X , we have

π∗ωX → π∗Ω⊗n
X → OP (1)

and its adjunction

ωX → π∗OP (1) = Ω⊗n
X

Since ωX is big andOP (1) is π-ample, there exists a number b such that ω⊗b
X ⊗OP (1)

is big. Hence OP (b+ 1) is big. Thus OP (1) is big.

(4) Obvious.

�

Lemma 2. Suppose the genus g(C) ≥ 2. Let ωX be the canonical invertible sheaf over X

of general type. Let A = ω⊗b
X ⊗OP (1) over P(Ω⊗n

X ) such that OP (1) ⊂ A for some b > 0.

Then there exists the following commutative giagram:

π∗f ∗S�Ω⊗n
C

�� π∗S�Ω⊗n
X

�� OP (�)

π∗π∗A ��

��

A

��

π∗f ∗Ω⊗n
C

��

�� π∗Ω⊗n
X

��

��

OP (1)

��

Proof. (1) Let g = π ◦ f . OP (1) ⊗ g∗ω⊗−n
C is effective. Hence OP (2) ⊗ ω⊗−n

C is big

because OP (1) is big.

(2) There exists a number �0 ≥ 1 such that

OP ⊂ A⊗ g∗ω⊗−n
C ⊂ ⊗�0

(OP (2)⊗ g∗ω⊗−n
C

)

(3) Hence

g∗ω⊗n
C ⊂ A ⊂

(
OP (2�0)⊗ g∗ω⊗−n(�0−1)

C

)

(4) Thus

g∗ω⊗n
C ⊂ A ⊂ OP (2�0)

(5) Set � = 2�0.

�

It is important to show the commutativity of the diagram above.

We find another approach to this problem without using a Kaehler differential sheaf.

Let k be a field of characteistic 0. Let X and C be non singular projective varieties

of general type over k and f : X → C a projective surjective morphism with connected
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fibres. Let Eb = ωX ⊕ f ∗ω⊗b
C for b ≥ 1 and π : P(Eb)→ X a projective bundle of relative

dimension 1 over X.

Lemma 3. Let X and C be non singular projective varieties of general type over k and

f : X → C a projective surjective morphism with connected fibres. Let OP (1) be the

fundamental invertible sheaf over P(Eb). Then OP (1) is big. If ωX is abundant, OP (1) is

abundant.

Proof. Since there exists a natural injection ωX → Eb, we have π∗ωX → π∗Eb → OP (1).

Applying π∗ to the homomorphism above, we get its non triviality. ωX is big. There is a

number b such that OP (1) ⊗ π∗ω⊗b
X is big. Hence O(b + 1) ⊃ OP (1) ⊗ π∗ω⊗b

X . It implies

OP (b+1) is big. Thus OP (1) is big. If ωX is abundant, E is abundant since ωC is ample.

Hence OP (1) is abundant. �

When ωX is abundant and big, OP (1) is abundant and big. We have a natural surjective

homomorphism for sufficiently large �

OP ⊗H0(P,OP (�))→ OP (�).

By this we have a morphism

P(Eb)→ P(H0(P,OP (�))).

We denote the image variety of this morphism by Q and the induced morphism by ρ :

P → Q. For sufficiently large �, Q is normal and its rational function field R(Q) is

algebraically closed in R(P ).

Proposition 1. For a natural projection Eb → f∗ω⊗b
C there exists a section σ : X → P

such that (Eb → f ∗ω⊗b
C ) = (Eb → σ∗OP (1)). σ(X) ⊂ P is a hypersurface of codimension

1.

Proof. It is obvious from the universality of the fundamental sheaf OP (1).Recall that

dimP = dimX + 1. Hence σ(X) is an effective divisor on P . �

Proposition 2. The morphism ρ : P → Q maps a divisor σ(X) to a curve in Q, which

is isomorphic to a curve C.

Proof. Since OP (1)|σ(X) = π∗(f ∗ω⊗b
C )|σ(X)

∼= f ∗ω⊗b
C over σ(X), the restriction OP ⊗

H0(P,OP (�))→ OP (�) to σ(X) is as follows:

Oσ(X) ⊗H0(P,OP (�)) ��

��

OP ⊗H0(σ(X), f ∗ω⊗b�
C )

��

OP (�)|σ(X)
�� f ∗ω⊗b�

C

Hence ρ maps σ(X) onto a curve in Q which is isomorphic to C. �

HIGHER DIMENSIONAL DIOPHANTINE PROBLEMS 32



Proposition 3. The hypersurface σ(X) ⊂ P determines an effective divisor which is a

holomorphic section of OP (1)⊗ π∗ω−1X ,i.e. OP (σ(X)) = OP (1)⊗ π∗ω−1X .

Proof. There is an isomorphism between P = P(ωX ⊕ f ∗ω⊗b
C ) and P ′ = P(OX ⊕ ω−1X ⊗

f∗ω⊗b
C ) and a natural isomorphism between fundamental sheaves OP ′(1) ∼= OP (1)⊗π∗ω−1X .

There is a non void canonical homomorphism

OP = π∗OX → π∗(OX ⊕ f ∗ω⊗b
C ⊗ ω−1X )→ OP ′(1) ∼= OP (1)⊗ π∗ω−1X

Hence an effective divisor determined by the above holomorphic section of OP (1)⊗π∗ω−1X

is a hypersurface σ(X). �

Proposition 4. Let E be the exceptional divisor for a birational morphism ρ : P → Q.

Then the intersection number (E, Bλ) ≥ 0, where Bλ is defined by Eb|Cλ
→ ω⊗b

Cλ
for

sufficiently large b.

Proof. Let G be a hyperplane in P(H0(P,OP (�))). Consider a curve ρ(X) which is isomor-

phic to C in Q. Remember ρ(σ(X)) = C. The pull-back ρ∗G is a pull-back of a Cartier

divisor for ρ : P → Q ⊂ P(H0(P,OP (�))), which is canonically isomorphic to OP (�).

Take a minimal m0 such that m0G contains a curve C. Then ρ∗m0G = F + E. Here

ρ∗E = 0 and ρ∗F = m0G in the groups of cycle classes A∗(Q) = Z∗(Q)/Rat∗(Q) where
Rat∗(Q) is a group of rationally equivalent to zero cycles on Q. From projection formula

we have (Bλ, ρ
∗m0G) = (ρ∗Bλ,m0G) = m0(C,G). We claim (Bλ, F ) ≤ (C,m0G). The

restriction of ρ to Bλ is an isomorphism. Hence every intersection points between Bλ and

F projects one to one into C, F may intersects other points with the pull-back of C in Q.

Hence (Bλ, F ) ≤ (C, m0G). Therefore we have (Bλ, E) = (Bλ, ρ
∗m0G)− (Bλ, F ) ≥ 0. �

Proposition 5. We obtain the following inequality (OP (1)⊗ π∗ω−1X , Bλ) ≥ 0.

Proof. For any b, dimH0(P,OP (σ(X)) = dimH0(P,OP (1)⊗ π∗ω−1X ) = dimH0(X, (ωX ⊕
f∗ω⊗b

C )⊗ω−1X ) = 1. Since we have (E, Bλ) ≥ 0 and Bλ ⊂ σ(X) ⊂ E, we get 0 ≤ (E, Bλ) =

(E|σ(X), Bλ) = (σ(X), Bλ) = (OP (1) ⊗ π∗ω−1X , Bλ). Remember σ(X) is a member of the

complete linear system |OP (1)⊗ π∗ω−1X |. �

Proposition 6. (ωX , Cλ) ≤ b(2g(C)− 2) for sufficiently large b.

Proof. Since (OP (1)⊗π∗ω−1X , Bλ) ≥ 0, (OP (1), Bλ) ≥ (π∗ωX , Bλ). The fundamental sheaf

OP (1) is isomorphic to ω⊗b
Bλ

∼= ω⊗b
C over Bλ. Hence (OP (1), Bλ) = b(ωBλ

, Bλ) = b(ωC , C) =

b degωC = b(2g(C)−2). From projection formula, (π∗ωX , Bλ) = (ωX , π∗Bλ) = (ωX , Cλ) ≤
b(2g(C)− 2). �

Remark 1. Let ωP/Q be the relative dualizing sheaf for ρ : P → Q. Since ωP/Q|ρ−1(C)
∼=

ωX/C, we have ωP/Q = OP (−σ(X)). Furthermore, π∗f ∗f∗(ω⊗�
X/C)|Bλ

→ π∗ω⊗�
X/C |Bλ

is

equivalent to f∗(ω⊗�
X/C) → ω⊗�

X/C |Cλ
. From the weak positivity of f∗(ω⊗�

X/C)([V], [Kaw], [?],

[Ws]), deg(ωX/C |Cλ
) ≥ 0.
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Proposition 7. Let L be an ample invertible sheaf over X. Then (L,Cλ) is bounded

above except for Cλ contained in a fixed hypersurface.

Proof. There exists a number a such that L → ω⊗a
X is non trivial.Hence (L,Cλ) ≤

(ω⊗a
X , Cλ) ≤ ab(2g(C)− 2). �

Proposition 8. There exist a finite number of Hilbert polynomials ([GG]) such that for

1 ≤ i ≤ M

Pi(m) = χ(Cλ, L
⊗m)

Hence there exists a Hilbert polynomial Pi(m) such that Pi(m) = χ(Cλ, L
⊗m) for curves

Cλ which are dense in X.

Proof. It is well known that there correspond a finite number of Hilbert polynomials

χ(Cλ, L
⊗m) where Cλ are bounded above for an ample invertible sheaf L over X. �

Proposition 9. There exists a quasi-projective subvariety T of Hilb
Pi(m)
X ([GG]) such that

every poit of T corresponds to a section Cλ ⊂ X. We have the following figure:

Cλ

��

⊂ Γ|T

��

⊂ X × T

��
t ∈ T = T

Proof. There exists thew following diagram of the universal family Γ over Hilbert scheme

Hilb
Pi(m)
X .

Cλ

��

⊂ Γ

��

⊂ X × Hilb
Pi(m)
X

��

t ∈ HilbPi(m)
X = Hilb

Pi(m)
X

We can construct a finite number of strata such that each poit of strata corresponds

to a section Cλ. There exists a strata T such that Γ ×
Hilb

Pi(m)
X

T → X is dominant by

assumption.

�

Proposition 10. There exists a dominant rational map

C × V ��

��

X

�����
��
��
��
�

C
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Proof. There exists an etale cover T ′ → T such that ΓT ′ → T ′ is a trivial product. Let V

be a projective compactification of T ′. Then we get the following commutative diagram:

Γ|T ′

�����
��
��
��

��
C × V ��

��

X

����
��
��
��
��

C

�

Lemma 4. Let X/C be a fibre space with the generic general fibre of general type. If

V × C → X over C is dominant, X/C is isotrivial.

Proof. Since X/C is a fibre space with the generic general fibre of general type, we can

apply maxm>0 κ(det f∗ω⊗m
X/C) ≥ var(X/C). We may choose dimV = dimX − 1 by hy-

perplane cuts. Thus from the condition that V × C → X is dominant, it follows that

κ(det f∗ω⊗m
X/C) = 0. Hence var(X/C) = 0, which means that X/C is isotrivial. �

Remark 2. The abundance conjecture that for a variety of general type there exists a

minimal model variety with the canonical sheaf abundant was proved. We can apply it to

our case([Mats], [Kaw], [Ko], [MP]).

3. Arithmetic case

We refer the following definitions to Moriwaki([Mo1], [Mo2], [Szp]).

Definition 1. A scheme is said to be an arithmetic variety(resp.a projective arithmetic

variety)if it is irreducible and reduced scheme and if it is flat and quasi-projective(resp.

projective) overSpecZ. An arithmetic variety is called generically smooth if the generic

fibre X ×SpecZ SpecQ is smooth over SpecQ.

When X is a generically smooth projective arithmetic variety, we have the connected

components Xσ for all σ : K → C of X(C) where we have the Stein factorization X →
SpecOK → SpecZ for some algebraic field K and the ring of integers of K OK . We write

by px : SpecC→ X the poit X(C) and by φx : SpecC→ SpecOX,px its homomorphism

to the local ring. Let E be a locally free coherent sheaf over X. For each x ∈ X(C),

E(x) = Epx ⊗OX.px
C is given a hermitian inner product by C∞-hermitian metric h =

{hx}x∈X(C). A couple Ē = (E, h) is called C∞-hermitian locally free coherent sheaf.

Definition 2. A C∞-metric h is said to be of real type if it satisfies the conditionthat for

every x ∈ X(C)

hx(s⊗x 1, s′ ⊗x 1) = hx(s⊗x̄ 1, s′ ⊗x̄ 1)

ACADEMIC REPORTS Fac. Eng. Tokyo Polytech. Univ. Vol. 33 No.1 (2010) 35 



for all s, s′ ∈ OX,px. Here x̄ is a complex conjugate and ⊗x means a tensor product with

respect to φx.

Definition 3. Let X be a generically smooth arithmetic variety, Z a cycle of codimension

p and T a (p− 1, p − 1)-current over X(C). A couple (Z, T ) is said to be an arithmetic

cycle of codimension p. It is called of Green type if ddc(T ) + δZ(C) is an element of

Ap,p(X(C)).

We refer to the arithmetic projection formula([Mo1]).

Proposition 11. Let f : X → Y be a projective morphism between generically smooth

arithmetic varieties. L̄ = (L, h) a C∞-hermitian invertible sheaf, s a non zero mero-

morphic section and η the generic point of X. Suppose that f(η) /∈ Supp(L, s) and that

Supp(f∗L, f ∗s) and Z intersect properly. Then

f∗(f ∗(L), f ∗s) · (Z, T )) = (L̄, s) · f∗(Z, T )

Let X be an arithmetic variety and F a coherent sheaf. Let | · |F be a set of norms

{| · |F,x}x∈X(C)

Definition 4. Let X be an arithmetic variety and F̄ = (F, h) C∞-hermitian coherent

sheaf of real type which has a bounded norm.

(1) s ∈ H0(X, F ) is called a small section if ||s||sup ≤ 1,

(2) s ∈ H0(X, F ) is called a strictly small section if ||s||sup < 1,

Definition 5. Let X be an arithmetic variety and L̄ = (L, h) a C∞-hermitian invertible

sheaf of real type.

(1) s ∈ H0(X, L) is called a small section if ||s||sup ≤ 1.

(2) s ∈ H0(X, L) is called a strictly small section if ||s||sup < 1.

(3) A C∞-hermitian invertible sheaf L̄ = (L, h) is said to be vertically ample if an

invertible sheaf L is ample over X and the curvature of L is positive over X(C)

with respect to h.

(4) A L̄ is said to be ample if it is vertically ample and if there exists a number n such

that L⊗n is generated by all strictly small global sections.

(5) A L̄ is said to be effective it L has a small global section.

(6) A L̄ is said to be big if there exist an ample C∞-hermitian invertible sheaf A and

a number n such that L̄⊗n ⊗ Ā−1 is effective.

(7) A L̄ is said to be abundant there exist a morphism from X to an arithmetic variety

Y such that L̄⊗n is isomorphic to the pull-back of an ample C∞-hermitian invertible

sheaf over Y for some n > 0.
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Proposition 12. A C∞-hermitian invertible sheaf L̄ = (L, h) is abundant if L⊗n is

generated by its global sections and the curvature of L is semi-positive over X(C) with

respect to h and if L⊗n is generated by its strictly small sections for some n > 0.

Proof. It is enough to show L⊗n is generated by its strictly small sections. Since ||·||Sup,X ≤
|| · ||Y,Sup for a strictly small global section of Ā over Y , it is obvious. �

Proposition 13. Let X be a projective smooth arithmetic variety and its Stein factoriza-

tion f : X → SpecOK. Let ωX/OK
be the relative dualizing sheaf and ω̄X/OK

= (ωX/OK
, h).

Suppose ω̄X/OK
is abundant, big and ω̄OK

is ample. Let Ēb = ω̄X/OK
⊕ f ∗ω̄⊗b

OK
and

π : P(Eb) → X the projective bundle over X. Then there exists a projective morphism

ρ : P(Eb)→ P(Ĥ0(X, Sm(Eb))).

Proof. Let OP (1) be the fundamental sheaf and its hermitian structure induced by π∗Eb →
OP (1). ThenOP⊗Ĥ0(X, SmEb)→ OP (m) is surjective by assumption. Hence there exists

a projective morphism ρ : P(Eb)→ P(Ĥ0(X, Sm(Eb))). �

Proposition 14. Under the same assumption of the proposition above, we have

ρ∗((ρ∗H, ρ∗s) · (Δx, 0)) = (H.s) · ρ∗(Δx, 0)

Here x ∈ X(C) with [K(x) : Q] < ∞ and s is a meromorphic section of H.

Proof. From the arithmetic projection formula we get it. �

Let Q be an image variety of a morphism ρ : P → P(Ĥ0(P,OP (m))). For sufficiently

large m, a variety Q is normal and ρ is a birational morphism. A natural surjective

homomorphism Eb → ω⊗b
OK

determines a section σ : X → P . Let ωP/Q denote the relative

dualizing sheaf for ρ : P → Q. We have ωP/Q|σ(X)
∼= ωX/OK

.

Proposition 15. The restriction ρ : P → Q to σ(X) is a mapping from σ(X) onto an

arithmetic curve which is isomorphic to SpecOK.

Proof. OP (m) on a subvariety σ(X) is isomorphic to ω⊗bm
OK

, which is ample over SpecOK .

Hence ρ maps σ(X) onto an arithmetic curve SpecOK �

Proposition 16. We have OP (1) = π∗ωX/OK
(σ(X)) and ωP/Q = OP (−σ(X))⊗π∗f∗ω⊗b

OK
.

Proof. There exists an exact sequenceOP → Eb⊗ω−1X/OK
→ OP (1)⊗ω−1X/OK

. Thus σ(X) is a

divisor of global section of OP (1)⊗ω−1X/OK
. We know ωP/Q = OP (−σ(X))+π∗f∗ω⊗b

OK
since

ωP/Q|σ(X)
∼= ωX/OK

and σ(X)|σ(X) = (OP (1)− ωX/OK
)|σ(X) = ((1 + b)ωOK

− ωX)|σ(X) �

Proposition 17. For a point x ∈ X(K) and its arithmetic curve (Δx, 0) we have for

Δx ⊂ σ(X)

ρ∗((ρ∗H, ρ∗s) · (Δx, 0)) = (H.s) · ρ∗(Δx, 0)
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where ρ∗H = OP (m). Furthermore let H ′ be the strict inverse image of H. Then OP (m) =

OP (H
′+ νσ(X), where ν > 0 is a number. We have ˆdeg ((σ(X), s”) · (Δx, 0)) ≥ 0, where

ρ∗s = s′ + s”.

Proof. Since ˆdeg ((H ′, s′) · (Δx, 0)) ≤ ˆdeg ((H, s) · (ρ∗Δx, 0)) for Δx ⊂ σ(X) and ρ∗((ρ∗H, ρ∗s)·
(Δx, 0)) = (H.s) · ρ∗(Δx, 0) by projection formula, we get ˆdeg ((σ(X), ρ∗s) · (Δx, 0)) ≥ 0

from (ρ∗H, ρ∗s) · (Δx, 0) = (H ′, s′) · (Δx, 0) + (σ(X), s”) · (Δx, 0) �

Proposition 18. ˆdeg(ω̄X) ≤ (1 + b) ˆdeg(ω̄OK
) for sufficiently large b.

Proof. It follows from ˆdeg(bω̄OK
− ω̄X/OK

) ≥ 0. �

Proposition 19. Let L̄ be a C∞ hermitian ample invertible sheaf over X, There exists

a number � such that ω̄⊗�
X ≥ L̄.

Proof. Since ω̄X is big, it is obvious. �

Definition 6.

hX,L̄ =
ˆdeg(L̄|Δx)

[K(x),Q]

We apply the following lemma to the proposition above to get the conjecture.

Lemma 5 (Northcott([Szp])). Let X be a projective arithmetic variety over SpecmathcalOK

and L̄ an ample invertible sheaf over X. Let hL̄ : X(K̄)→ R denote the height function

associated to L̄. Then for any positive real numbers ε, M , the set {x ∈ X(K̄)|[K(x) :

Q] ≤ ε, hL̄(x) ≤ M} is a finite set.
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