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Dynamics of a family of regular polynomial maps of OF

Shizuo Nakane *

In this note, the dynamics of regular polynomial endmorphisms of C?is investigated. Especially,

their Bottcher coordinates are constructed.

1 Introduction
In this note, we will construct the Bottcher coordinates for maps F, of the form :

Fo(z,y) = (2% — cy,y* — ca),

which is studied in Uchimura [U].

Let f(z) be a polynomial endomorphism of C* of degree d and let f4(z) be the
degree d part of f(z). It is regular if f, *(0) = {0}. Note that regular polynomial
maps extend to analytic maps of P*. Let II denote the hyperplane at oo, which is
isomorphic to P*~!. In case k = 2, TI is isomorphic to the Riemann sphere C. For
a regular polynomial map f, we denote the filled-in Julia set also by K(f). It is a
compact subset of C*. And J(f) denotes the smallest Julia set of f, that is, the
support of u = (ddCGf)k. Here G is the Green function of f :

o1 .
Gy(z) = lim —log™ |f"(2)],

which expresses the escape rate of the orbit of the point z € C*. We put fi = flm,
Jin = J(fnr) and let C(f) be the set of the critical points of f. We define the stable
sets W*(Ju, f), Wi .(¢) and W?(¢) of Ji and ¢ € Ji respectively by

W*(Jn, f) = {z€P" lim d(f"(2), Ju) = 0},

Wie(C, f) = {2 €Phd(f"(2), *(¢) < 6, n > 0},
W2(¢,f) = {z€P lim d(f"(2), /() = 0}
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For example, the map F, above is regular, F, (z,y) = (22, y*) = Fo(z,y) and

K(F) = {lz| <1yl <1}, J(Fo) = {laf = [y[ =1},
C(F) = {ey=4c", Feon(Q)=¢% J(Fn) ={[(|=1} (for any c),
W(¢ Fo) = Ay = Ca, o[ > 1}, W (Jn, Fo) = {|z] = [y| > 1}

Note that F. 1 is uniformly expanding on Ji.

Put A4y = {z € P*;G;(2) > Ro} and W§(a) = WS, (a) N Ay, Wi (Jm, f) =
W (Ju, f) N Ag. Note that W (a) is a complex disk. The Béttcher coordinate ®
of f was defined in [BJ] as a homeomorphism W§(Ji, f) — W§(Ju, fr) satisfying
Do f=fnod. It extends to W*(Jy, f) until it meets a critical point.

Bedford and Jonsson [BJ] have constructed the Bottcher coordinates for general
regular polynomial endomorphisms on C*. See also Hubbard and Papadopol [HP]
and Peng [P]. Here we will give a more direct and elementary construction for our
maps F,.. Then we can construct their Bottcher coordinates as holomorphic maps
in an open neighborhood of W§(Ji, F;) and we can show the uniqueness in some
sense.

2 Bottcher coordinates for maps £

Put (zpn,yn) = F'(z,y) and consider the orbits of points in the region
1
D= {(e.0) € C lal <yl < blal, el Il 2 28

Note that, for large k£ and R, each connected component of the set {(z,y) €
C%; ||, |y| > 2R} \ Dy, is contained in the basin of the super-attracting fixed point
[1:0:0]or[0:1:0]inII. Thus it follows W (Jm, Fe) C Dy gr. In the sequel, we

always assume k£ > 1 and
I 1/2m
R > 3k - max <—3 ) +1]. (2.1)

Lemma 2.1. For (z,y) € Dy g and for n > 1, it follows

|35n—1|2
2 b
g(?’k) |Znl, |xn|§§(3k) |Yn|-

|yn—1|2
2 b

Vv

|zl |Ynl 2R2na |z | > |Yn| >

IA

|yn|
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proof. We prove the lemma by induction on n. The case n = 1 follows from the
following.

2R 2

k 2
ol 2 fal = leyl 2 Jef (1 - %) (Z %)
> 4R2 |C| >2R2
B 2R
k
) < JylP o fex] < Jyf? (1 n ||C|| )
k 3k‘2 2
< | |2 <1+ |C| ) |13| §3k2|x1|.

Now suppose the case n and we prove the case n + 1.

n k)"
ol 2 Il (1= 25) = (1= S
T T
(3k)?"|c| |z, |2
> |an)? <1 — > —
6R2" 2
> 9R",

Here we use the assumption (2.1). By the same way, we have

|z, | 3y |2 31 nt1 1 ntl
il < lonl? (1412 ) < 28 < 2000 o < 5607 e,
n
The proof of the other inequalities are the same. This completes the proof. U

As in case of dimension one, we put pi(z,y) = lim, 2r/?" and po(x,y) =
limy, o0 yn/2 If these limits exist, the map P.(x,y) = (p1(z,y), p2(x,y)) will give
a Bottcher coordinate of Fr.

Proposition 2.1. The map ®.(z,y) = (p1(x,y), p2(x,y)) is holomorphic in Dy g,
depends holomorphically on c, satisfies ®.o F, = Fyo ®. and

p1(z,y) =2+ O(1), @a(z,y) =y+ O(1). (2.2)
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proof. We have only to show the statements for ¢;. Since

R ) | on _ 9n Lj+1 _oon CYj
$n - . €T =X _— = 1 —
2 22 22 2 2 =

Tn1 29 §=0 J §=0

1/20+1
1/2" — H ( cyj> )

From Lemma 2.1, the following holds under the assumption (2.1) :
27 27

LBk e (3R

— 3lzjl T 6 \ R

Then the series E 2] Py yg converges uniformly and absolutely in Dy, g, hence the
xr“
J

it follows

Y
2
T

limit ¢ (z,y) = lim, x}z/ 2 exists, holomorphic on Dy r and depends holomor-
phically on ¢. The functional equation follows from the definition of ®..
In the proof of Lemma 2.1, we also have

2
T
or] > '2' > Rl
2 el el ’
2 2
|01 |z[*" 2R)* Y| _ Lones
|x"l| Z 9 - 21+2+...2n—1 = 22n_1 Z R |5€|
Then it follows .
(3K)*" _ <3k)2 R
lzn| T \R/) Ja|

Hence we have

which implies

This implies (2.2). O
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Corollary 2.1. The map ®. extends holomorphically to the closure Dy, g in P? and
satisfies c|p—y = idlp—-y- It is injective in a neighborhood of Dy p NIL. @
gives a Béttcher coordinate of F.

proof. The first assertion follows from the estimate (2.2). This estimate also
implies that there exists bounded holomorphic functions §; and & on Dy g such
that ¢1(z,y) = x + &1(2,y), p2(z,y) = y + & (x,y). By Cauchy’s integral formula,
it follows that the jacobian matix Jac(®.) satisfies

o 1+&, &1, _( 14+ 0(1/R) O(1/R)
Jac(®e) = ( b 116, ) = ( O(/R) 1+ O0(/R) ) ’

in Dy r for large R. Thus ®. is locally biholomorphic in Dy r. Especially @,

maps Dy g onto an open neighborhood of Jyy in P2 Suppose @, is not injective in any
neighborhood of mﬂ II. Then there exist sequences of distinct points [z, : yp, : 1]
and [uy, : vy, : 1] tending to [zg : yo : 0] and [ug : v : 0] on Dy NI respectively such
that ®.(zp, yn) = Pc(upn, vy). Then we have D.([zg : yo : 0]) = Pc([up : vo : 0]), hence
[0 : yo : 0] = [up : vo : 0]. This contradicts the local injectivity at [xp : yo : 0]. Thus
we conclude that ®. gives a biholomorphism between some open neighborhoods of
Ju(Fe) and Jip(Fo). The conjugacy in Proposition 2.1 implies ®, maps W (Ju, F¢)
into W (Ji, o). Thus the restriction of ®. to W§(Ji, F;) is the desired Bottcher
coordinate of F,.. This completes the proof. ]

We can show the uniqueness of the Bottcher coordinates satisfying the property
in Proposition 2.1.

Lemma 2.2. The Bottcher coordinate of F., holomorphic in Dy g for large R sat-
isfying (2.2), is unique.

proof. Suppose @, and @/ are two Bottcher coordinates of Fi. in some m.
Then the map ® = @, o0 ®_! commutes with Fy. Put ®(z,y) = (¢1(2,9), p2(z,v)).
If we put y = tx and @1 (z,t) = ¢1(x,tx), P2(x,t) = po(z,tz), they are holomorphic
in {|z| > 2R, 1/k < |t| < k} and satisfy the functional equation :

Pi(a®, %) = ¢;(z, 1), (j=1,2).

We write ¢ as

Pl t) —a+ 39U

‘ T
Jj>k
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where a; is holomorphic in {1/k < |t| < k} and k > 0 is the minimum such that ay,
does not identically vanish. Then, it follows

S NS 1 () 1

¢r(z7,t7) = w +$T+O(W)

pwn? = 2% o),
which is impossible if £ > 0 is finite. Thus gbl(x,t) = 1z, hence pi(z,y) = x. The
same holds for p9. Then ® = id, hence ®. = ®.. This completes the proof. O

Denote the Green function of F, by G..
Lemma 2.3. G.(x,y) = max(log™ |¢1(z,y)|,log™ |p2(z,y)|) = Go o c(x,y).
proof. From the proof of Proposition 2.1, the limit
Ge(w,y) = lim 27" log™ |F!(x, y)]

exists and continuous on Dy, g. Suppose log™ |1 (z,y)| > log™ |p2(z,y)|. Then there
exists a K > 1 such that |z,|> " > K|y,|?> ". That is, |z,| > K?"|y,| and hence

|Fe (2, y)| = [n] ~ Janl.

Then G(z,y) = lim, oo log™ |2,|* " = log™ |1(z,y)|. The case log™ |p1(x,y)| <
log™ |pa(x,y)| is similar. Now the lemma follows from the continuity of G., ¢ and

2. O
Lemma 2.4. Wi (¢, F,) = {(z,y) € Ao;p2 = (o1} for any ¢ € Ji.

proof. Put &(x,y) = p2(T,y . Then, since
901("1:7y)
p2(Fe(,y) _ (p2(,9)\? 2
§(Fe(z,y)) = = =&(@,y)°,
Eeleov) = o Ftww) ~ Lortoy) (r:9)
it follows that &(F(z,y)) = &(x,y)?"
Now suppose @o(z,y) = (p1(z,y). Then, we have w =¢%". From (2.2),
Sol(xnayn)
it follows |yn —¢*"| = 0. Then [z, : 1] is close to [1: ¢ : 0] in P* for any n > 0.

Thus (x, y) € Ws (¢, Fe).



Dynamics of a family of regular polynomial maps of C*

Next, suppose (x,y) € W§(¢, Fe). If [£(z,y)| # 1, E&(F(x,y)) tends to oo or

0, which contradicts with the assumption (x,y) € W§((, F.). Hence % =7
P1T, Y

for some 7 € Jp. Then from the first part, we have (z,y) € W{(7,F.). Since

W (T, Fe), 7 € Jy are mutually disjoint, we must have 7 = (. This completes the
proof. O

Corollary 2.2. W§(Ju) = {(z,y) € Ao;[p2(z,9)| = |o1(z,y)l}.
Lemma 2.5. ®c|yw;s(c,r.) @ Wi (¢, Fe) = W§(C, Fo) is conformal for any ¢ € Ju.

proof. It follows from Proposition 2.1 that @C|WS(C, F.) is holomorphic. Its image
is equal to W§ (¢, Fy) by Lemma 2.4. By (2,1), ®.(z,y) = (z,y) +O(1). This implies
its conformality. This completes the proof. U
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