
Comparison Theory

Kazuhisa Maehara

Abstract

In this article we shall propose a new formula which is a generalization of Iitaka’s
addition formula and we shall prove it. It works for varieties of negative Kodaira
dimension.

1 Introduction:

To classify algebraic varieties in the category of birational geometry, Iitaka proposed many

conjectures after Kodaira-Enriques classification of surfaces. His key birational invariant

is Kodaira dimension. One of his main conjectures is the following:

Conjecture 1.1. Let f : X → S be a fibre space over a field of characteristic 0. Then

κ(X) ≥ κ(Xs) + κ(S), where Xs is a general fibre of X/S.

Vanishing theorems, weak positivity and extremal rays are found to prove his conjec-

tures. Viehweg conjectures the following:

Conjecture 1.2. Let X/S be a fibre space with the geometric generic fibre of Kodaira

dimension ≥ 0. Then there exists a number m such that

κ(det f∗ω⊗m
X/S) ≥ var(X/S).

This is equivalent to the following

Conjecture 1.3. κ(ωX/S) ≥ κ(ωXs) + var(X/S)

This implies Iitaka conjecture.

It shall be derived from the following:

Conjecture 1.4. Assume var(X/S) = dim S and κ(Xs) ≥ 0. Then f∗ω⊗m
X/S is big for

some m > 0.
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Viehweg conjecture seems to be the strongest one among analogs of Iitaka conjecture.

These conjectures work well in the category of varieties of Kodaira dimension ≥ 0. In

this category rational maps have functorial properties and the connected component of

the birational automorphism group of varieties of Kodaira dimension ≥ 0 is algebraic.

The varieties of Kodaira dimension −∞ is troublesome for functorial property. The

varieties are to be uniruled. It would have Mori fibre space. Even though the structure

of varieties of Kodaira dimension −∞ is rather simple, the rational maps between them

are occasionally uncontrollable. The connected component containing “id” of birational

automorphism groups for almost all varieties are non algebraic.

Conjecture 1.5. The canonical invertible sheaf is weakly positive if and only if the variety

is of Kodaira dimension ≥ 0.

Iitaka furthermore has proposed a program for varieties with logarithmic structure to

classify varieties of Kodaira dimension −∞.

Unexpectedly the author found the following theorem which works in the category of

varieties of Kodaira dimension −∞.

Theorem 1.6. Let f : X → S be a fibre space with var(X/S) = dim S and ωX weakly

positive. Then there exists a big Q invertible sheaf L over S such that κ(f ∗L−1⊗ωX/S) ≥ 0

and κ(L⊗ ωS) ≥ 0.

This theorem implies almost all conjectures above.

For completing inductive arguments, let’s introduce a category such that its object is a

couple (X,AX) of a projective variety X with terminal singularities and a big Q invertible

sheaf or the structure sheaf OX over X described by AX , for simplicity (X,A) = (X, AX),

its morphism is an ordinary morphism and let ω(X,A) denote ωX ⊗ AX .

Theorem 1.7. Let f : X → S be a fibre space with ω(X,A) weakly positive and var(X/S) =

dim S. Then there exists a big Q invertible sheaf L over S such that κ(⊗ω(X,A)/(S,L)) ≥ 0

and κ(ω(S,L)) ≥ 0.

As to a variety with ω(X,A) not weakly positive, one obtains

Theorem 1.8 (Rationality). Assume that a canonical divisor KX of X is not weakly

positive and that D is big. Then t0 = inf{0 < t ∈ Q; KX + tDis weakly positive} is a

rational number. Furthermore, dim X > κ(KX + t0D) ≥ 0.
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2 Proofs

2.1 preliminaries

First one investigates the birational geometry from the point of view of the absolute Galois

groups. Let X → S be a fibre space. Let 1 → G → E → K → 1 be an extension of

a profinite group K by a profinite group G associated to the fibre space X → S. To an

exact sequence 1 → InnG → AutG → OutG → 1, we have an exact sequence

H1(BK, InnG) → H1(BK, AutG) → H1(BK, OutG),

i.e.,

Hom(K, InnG) → Hom(K, AutG) → Hom(K, OutG).

Here BK denotes the classifying space of K and OutG denotes the outer automorphism

group of G. A group extension is an element of H1(BK, G → AutG) , where G → AutG

is a crossed module. We have

1 → H2(BK, Z(G)) → H1(BK, G → AutG) → H1(BK, OutG).

Here Z(G) denotes the center of G. Assume that a general fibre of X/S has non negative

Kodaira dimension. Then the canonical representation ρ : K → OutG turns out to be

trivial after replacing a profinite group associated to a finite morphism S ′ → S in the

following lemma. Furthermore assume that the extension is neutral.

Since we have H2(BK, Z(G)) → H1(BK, G → Aut(G)), the extension 1 → G → E →
K → 1 is given by pushing out an extension 1 → Z(G) → E ′ → K → 1. Hence E ′

is a semi-direct product Z(G) oK, which is contained in a semi-direct product G oK.

Thus this central extension is trivial. Therefore by pushing out this central extension, the

extension 1 → G → E → K → 1 is trivial.

Lemma 2.1. Assume the geometric generic fibre of X/S has non negative Kodaira di-

mension. There exists a generically finite morphism S′ → S such that the representation

ρ : K ′ → Out(G) is trivial. Here K ′ denotes the absolute Galois group Gal(R(S ′)/R(S ′)).

Proof. Let A denote Out(G). Since the generic fibre of X/S is not uni-ruled, the birational

automorphism group A of the generic fibre is locally algebraic. The natural representation

ρ : K → A induces ρ : K → A/A0, where A0 denotes the neutral component of A. There

is no countable profinite group. Since A/A0 is a countable set, ρ(K) is a finite group.

Replace by K the kernel of ρ. We have ρ : K → A0. Hence we have an isomorphism

H1(R(S)/R(S), A0(R(S)) ∼= H1(BK,A0).
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Let P be an A0-torsor associated to ρ : K → A0. A0 is algebraic (quasi-compact, faithfully

flat and of finite type) over Spec(R(S)). Thus there exists a generically finite S ′ → S such

that an A0-torsor P is trivial over Spec(R(S ′)). Hence the representation ρ : K ′ → Out(G)

is trivial.

We obtain the following key result in our proof.

Theorem 2.2. Let 1 → G → E → K → 1 be an extension of a profinite group K by a

profinite group G. Assume

(a) the connected component containing id, i.e., the neutral component of Out(G), is an

algebraic group.

(b) E → K has a section which is a group homomorphism, i.e., a neutral extention.

Then there exists a profinite group K ′ such that the pull-back of the extension 1 → G×K

K ′ → E ×K K ′ → K ′ → 1 is a direct product.

By Galois theory and Mochizuki’s theorem([Mch]). we have a categorical equivalence

between the category of complete varieties as objects with dominant rational maps as

morphisms and that of bands (liens in French) of profinite groups.

Note that the neutral component of the birational automorphism group Bir(X) of a

complete variety of non negative Kodaira dimension is a smooth algebraic group and that

the extension of the rational function fields of a fibre space X/S is a regular extension.

To a fibre space X/S corresponds an extension E of K by G. One can interpret the

theorem above.

Remark 2.3. Let f : X → Y be a dominant rational map over S. Assume that Bir(Y )

is locally algebraic. Then one obtains var(X/S) ≥ var(Y/S).

Remark 2.4. Let V be a quartic uniruled threefold. Then any deformation of a quartic

threefold V over a curve with maximal variation contains only discrete quartic threefolds.

Remark 2.5. Let Γ be the absolute Galois group of the rational function field of the

projecive line over an algebraically closed field of characteristic 0. Γ has no center and

Out(Γ) an algebraic group. Hence the absolute Galois groups of the rational function

fields of rational varieties are center-free. Consider a fibre space with a general fibre ra-

tional. There exists a profinite group K such that H1(K, Γ → Out(Γ)) = 1. Furthermore,

H1(K, Γu → Out(Γu)) ∼= H1(K,Out(Γu)).

Question 1: Are the absolute Galois groups of the rational function fields of unirational

varieties (resp. rationally connected varieties) center-free?
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Remark 2.6. As to an extension 1 → G → E → K → 1, if G and K are center-free,

then E is center-free. The image of Z(E) is contained in Z(K).

Quetion 2: If both G and K have non trivial centers, when has E a non trivial center

larger than Z(G) under some conditions ?

Question 3: Have the absolute Galois groups of the rational function fields of non

uniruled varieties non trivial centers?

Question 4: What conditions do the absolute Galois groups of the rational function

fields of non uniruled varieties (resp. varieties of Kodaira dimension non negative) satisfy

? Will they be the conditions (i)the neutral component of the outerautomorphism groups

of the absolute Galois groups are algebraic, (ii) the centers of the absolute Galois groups

are non trivial ?

Remark 2.7. The absolute Galois groups of the rational function fields of varieties are

successive extensions of those of the rational function fields of curves.

The absolute Galois groups of the rational function fields of non uniruled varieties

have centers. The absolute Galois groups of the rational function fields of varieties have

quotient groups which are non abelian finite groups.

Remark 2.8. Simple profinite groups are not associated to the absolute Galois groups of

rational function fields.

Remark 2.9. Let φ : G1 → G2 be an open continuous homomorphism of profinite groups.

φ(G1) ⊂ G2. Let Z(G2)Cφ(G1)(φ(G1)) denote C. Then for a homomorphism between

extensions of K by G1 and G2 respectively, one has homomorphisms H2(K, Z(G1)) →
H2(K, φ(Z(G1))) → H2(K, C) . There exists an open subgroup K ′ of finite index of K

such that H2(K ′, Z(G2)) → H2(K ′, C) is injective.

Remark 2.10. Consider a fibre space with the geometric generic fibre with the birational

automorphism group locally algebraic. Let Γ be the absolute Galois group of the geomet-

ric generic fibre. There exists a profinite group K of finite index of the profinite group

associated to the base variety such that H1(K, Γ → Out(Γ)) ∼= H2(K, Z(Γ)).

Let X/S be a fibre space. Consider the following commutative diagram:

X

g ↘
f ↓ Z

↙ h

S
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This formula is available.

Lemma 2.11 (Iitaka). For a fibre space X/S and an invertible sheaf L, κ(L) ≤ κ(L|Xη)+

dim S

One has the following two lemmas for variations of fibre spaces.

Lemma 2.12.

var(X/S) ≤ var(X/Z) + var(Z/S)

Proof. One begins with the case var(Z/S) = 0. Hence one assume that there exists a

variety such that Z/S = F × S for simplicity. For any point t ∈ F one has a fibre space

X ×Z S × t = Xt. If var(Xt/St) < dim St, there exists a fibre space X0/S0 such that

Xt/St is the pull-back of X0/S0 and dim S0 = var(Xt/St). Hence there exists a variety

X0 such that X ∼ X0 ×S0×F S × F . Thus var(X/S) ≤ dim S0, which is a contradiction.

In general there exists a fibre space Z0/S0 such that X/S is the pull-back of X0/S0. One

restricts the diagram Z/S → Z0/S0 over any point t ∈ S0. Then var(Zt/St) = 0. Thus

var(Xt/St) ≤ var(Xt/Zt)+var(Zt/St) for any point t. If var(X/S) > var(X/Z)+var(Z/S),

then there exists a point such that var(Xt/St) > var(Xt/Zt) + var(Zt/St), which is a

contradiction.

Lemma 2.13. Let Z/S the pull-back of Z0/S0. For the geometric generic poit η0 of S0

let Xη0
/Zη0

/Sη0
be the pull-back X/Z/S. Then dim Sη0

≤ var(Xη0
/Zη0

)

Proof. Note that var(Xη0
/Sη0

) ≤ var(Xη0
/Zη0

) + var(Zη0
/Sη0

) and var(Zη0
/Sη0

) = 0.

Since dim Sη = var(Xη/Sη0
), one has dim Sη ≤ var(Xη0

/Zη0
).

2.2 Weak positivity

Let S be a projective smooth variety over a field of characteristic 0 and G a coherent sheaf

over S.

Definition 2.14. A coherent sheaf G is said to be weakly positive with respect to an

invertible sheaf L over a dense open subset So of S if for every number α > 0 there exists

a number β > 0 such that the canonical homomorpfism

OS ⊗H0(S, SαβG ⊗ L⊗β) −→ SαβG ⊗ L⊗β

is surjective over So.

A coherent sheaf G is said to be big if for a big invertible sheaf H there exists a number

ν > 0 such that SνG ⊗H−1 is weakly positive.
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Let f : X → S be a fibre space between smooth projective varieties with κ(ω(X,A)|η) ≥
0. Suppose there exists a number m ≥ 2 such that f ∗f∗ω⊗m

(X,A)/S → ω⊗m
(X,A)/S is generically

surjective. Let H be an ample invertible sheaf over S. Put

r(ν) = Min{µ; f∗ω⊗ν
(X,A)/S ⊗H⊗µν−1is weakly positive}.

Then there exists a number β > 0 such that

Sβ(f∗ω⊗ν
(X,A)/S)⊗H⊗β·r(ν)·ν−β ⊗H⊗β = Sβ(f∗(ω⊗ν

(X,A)/S ⊗ f ∗H⊗r(ν)·ν))

is globally generated over some dense open subset. Put r = r(m). Composing homomor-

phisms one has a globally generated invertible sheaf

ω⊗m
(X,A)/S ⊗H⊗r·m

over an inverse image of some open subvariety of S. One can represent this invertible

sheaf by an effective divisor which has no fixed part on an open set where the invertible

sheaf is globally generated. One chooses a general effective divisor such that a moving

component has no multiplicity. Put O(D) = ω⊗m
(X,A)/S⊗H⊗r·m. Desingularize X such that

all the fractional components are normally crossing and replace it by X. Consider a multi

Kummer m-covering T with respect to all the fractional components which are nomally

crossing. Then

f∗ω(X,A)/S(dω⊗(m−1)
(X,A)/S ⊗H⊗r·(m−1)(−m− 1

m
D)e)

is a direct factor of g∗ωT/S. The sheaves

f∗ω(X,A)/S(dω⊗(m−1)
(X,A)/S ⊗H⊗r·(m−1)(−m− 1

m
D)e)

and

f∗(ω⊗m
(X,A)/S ⊗H⊗r·(m−1))

have the same ranks. Assume g∗ωT/S is weakly positive. Hence f∗ω⊗m
(X,A)/S ⊗H⊗r·(m−1) is

also weakly positive. By definition,

(r − 1)m− 1 < r(m− 1)

i.e., r ≤ m. Hence f∗ω⊗m
(X,A)/S ⊗ H⊗(m2−1) is weakly positive. This number ` = m2 − 1

is independent of any ample invertible sheaf H and a pull-back of X/S to every finite

smooth covering τ : S ′ → S. Give α > 0. Take a Kawamata covering τ : S ′ → S such

that τ ∗H = H ′⊗2α`+1. Pull back a fibre space X/S to XS′/S
′ by the Kawamata covering.

Apply the same argument to a desingularized fibre space XS′/S
′.

48



Sβ(S2α(τ ∗f∗ω⊗m
(X,A)/S ⊗H ′`)⊗H ′)

is globally generated over a dense open subset. This is rewritten as

Sβ(S2α(τ ∗f∗ω⊗m
(X,A)/S)⊗ τ ∗H).

Thus

OS′ ⊗H0(S, Sβ(S2α(τ ∗f∗ω⊗m
(X,A)/S)⊗ τ ∗H)) −→ Sβ(S2α(τ ∗f∗ω⊗m

(X,A)/S)⊗ τ ∗H).

By the trace homomorphism τ∗OS′ → OS, one obtains a composition of surjections

τ∗OS′ ⊗H0(S, Sβ(S2α(τ ∗f∗ω⊗m
(X,A)/S)⊗ τ ∗H)) −→ Sβ(S2α(f∗ω⊗m

(X,A)/S)⊗H ⊗ τ∗OS′) −→

Sβ(S2α(f∗ω⊗m
(X,A)/S)⊗H).

Thus tensoring H⊗β one gets S2β(Sα(f∗ω⊗m
(X,A)/S)⊗H) which is globally generated over a

dense open set for a suitable β >> 0. Thus f∗ω⊗m
(X,A)/S is weakly positive. Therefore one

can take the minimal number r(m) = 1 in the first assumption.

Proposition 2.15. One has a generic surjection

g∗ωT/S → f∗ω⊗m
(X,A)/SH⊗(m−1).

This formula is independent of taking an ample invertible sheaf H.

Lemma 2.16. Assume that L−1Sγg∗ωT/S is weakly positive. Then

L−1Sγf∗ω⊗m
(X,A)/S ⊗H⊗γ(m−1)

is weakly positive, which is independent of taking an ample invertible sheaf H.

Proof. From proposition above

g∗ωT/S → f∗ω⊗m
(X,A)/SH⊗(m−1)

is generically surjective and so

L−1 ⊗ Sγg∗ωT/S → L−1 ⊗ Sγf∗ω⊗m
(X,A)/SH⊗γ(m−1)

Hence, one obtains the following

Proposition 2.17. Assume that g∗ωT/S is big. Then f∗ω⊗m
(X,A)/S is big.
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Remark 2.18. In this case a canonical divisor of the geometric generic fibre of the multi

m-Kummer covering T/S is abundant.

Theorem 2.19. Let X/S be a fibre space with a canonical invertible sheaf ω(X,A)|η of the

geometric generic fibre abundant. Then there exists a number m such that κ(det f∗ω⊗m
(X,A)/S) ≥

var(X/S).

One divides the proof into several steps.

First, one may reduce the theorem to the following. Take the Iitaka multi canonical

fibring φ : X → P(f∗ω⊗m
(X,A)/S) over S.

X

↘
f ↓ Y

↙
S

Here Y is the desingularization of the image of φ and replace the other varieties by

suitable desingularizations. By Iitaka’s theorem the geometric generic fibre (X, A)y of

(X,A)/Y is of Kodaira dimension 0 and abundant.

Lemma 2.20.

κ(det f∗ω⊗m
(X,A)/S) ≥ var(Y/S)

Proof. It suffices to prove that if κ(det f∗ω⊗m
(X,A)/S) = 0, then var(Y/S) = 0. But it is

obvious.

Assume dim Y/S > 0. If var(Y/S) = dim S, there is nothing to be proved. If

var(Y/S) = 0, there exist so many sections that the closure of them is dense after re-

placing a generically finite covering S ′ → S. Hence the inductive argument holds. There

remains the case dim Y/S = 0,i.e., κ(ω(X,A)|s) = 0. When the irregularity q(Xs) =

dim H1(Xs,OXs) > 0, take the relative Albanese mapping. The image over the base va-

riety S has the geometric generic fibre of Kodaira dimension ≥ 0. Hence the inductive

argument holds if q(Xs) > 0. Thus there remains the case κ(ω(X,A)|s) = 0, q(Xs) = 0 and

ω(X,A)|s is abundant.

Lemma 2.21. Let X/S be a fibre space with a trivial canonical invertible sheaf ω(X,A) of

the geometric generic fibre and A a normal crossing divisor. Then there exists a number

m such that κ(det f∗ω(X,A)/S) ≥ var(X/S).
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Proof. If the Griffiths period mapping ψ is generically finite, then f∗ω(X,A)/S is big. Oth-

erwise, there exists a subvariety S ′ such that the image ψ is a point. Replace S ′ by S.

The tangential map of ψ Ts → Hom(H0(Xs, Ω
d
Xs
〈A〉), H1(Xs, Ω

d−1
Xs
〈A〉)) is zero. Since

ω(X,A)|s = OXs , one obtains Kodaira-Spencer mapping Ts → H1(Xs, ΘXs ⊗ ω(X,A)|s),
which vanishes. Hence var(X/S) = 0. This completes the proof.

Lemma 2.22. If ω(X,A)/(S,L) is weakly positive and if A and L are invertible sheaves over

X and S, respectively, then f∗ω(X,A)/(S,L) is weakly positive, or zero sheaf. Furthermore,

if ω(X,A)/(S,L) is abundant over the geometric genric fibre of X/S, then there exists an

integer m > 0 such that f∗ω⊗m
(X,A)/(S,L) is weakly positive.

Proof. From Kollar-Viehweg’s theorem([Vieh]), f∗(ω(X,A)) ⊗ H⊗d+1is generated by the

global sections when H is very ample over S and d = dim S. Let X(r) denote a desin-

gularization of r-power of Xr = X ×S · · · ×S X. f
(r)
∗ (ω(X(r),A)) ⊗ H⊗d+1 = ω(S,L) ⊗

f
(r)
∗ ω(X(r),A)/(S,L) ⊗ Hd+1 is generated by the global sections. Since Xr is of Gorenstein

singularity and X/S is able to be assumed flat outside a locus of codimension 2 of S,

one has an isomrphism f∗ω(X,A)/(S,L) = ⊗rf∗ω(X,A)/(S,L). Hence f∗ω(X,A)/(S,L) is weakly

positive, or zero sheaf.

Let f1 : X1 → X be a multi-Kummer covering with respect to the fractional part of

an effective Q-ample divisor the support of which is normally crossing such that L is an

invertible sheaf. Then f1∗ω(X1,A)/(S,L) is weakly positive. Since ω⊗m
(X,A)/(S,L) is an invertible

sheaf over X and since ω(X,A)/(S,L) is abundant over the geometric generic fibre of X/S，
there exists an integer m > 0 such that f∗1 f1∗ω⊗m

(X,A)/(S,L) → ω⊗m
(X,A)/(S,L) is surjective. Let

H be an ample invertible sheaf over S and

r(ν) = min{µ|f1∗ω⊗ν
(X,A)/(S,L)is weakly positive}.

By the definition of weak positivity,

Sβ(f1∗ω⊗ν
(X,A)/(S,L) ⊗H⊗r(ν)ν−1 ⊗H) = Sβ(f1∗ω⊗ν

(X,A)/(S,L) ⊗H⊗r(ν)ν)

is spanned by the global sections over a dense open subset of S. Let ν = m, r = r(m).

Thus，if necessary，replacing X1 by a birationally equivalent variety, one can represent

ω⊗m
(X,A)/(S,L) ⊗ H⊗m as an effective divisor D such that the restriction of D on a general

fibre of X1/S is non singular and such that the support of the fractional part of D is

normally crossing. Take again a multi-Kummer covering X2 → X1 with respecr to the

fractional part of
m− 1

m
D. Then

f1∗ω(X1,A)/(S,L)(dω⊗m−1
(X,A)/(S,L) ⊗H⊗r(m−1)(−m− 1

m
D)e)
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is weakly positive since this is a Gal(X2/X1)-invariant direct factor of f2∗ω(X2,A)/(S,L) that

is weakly positive. Since there is a generic isomorphism

f1∗ω(X1,A)/(S,L)(dω⊗m−1
(X,A)/(S,L)⊗H⊗r(m−1)(−m− 1

m
D)e) → f1∗ω(X1,A)/(S,L)(ω

⊗m−1
(X,A)/(S,L)⊗H⊗r(m−1)),

the latter term is also weakly positive. Hence this Gal(X1/X)-invariant direct factor

f∗ω(X,A)/(S,L)(ω
⊗m−1
(X,A)/(S,L) ⊗H⊗r(m−1))

is also weakly positive. Therefore one has

(r − 1)m− 1 < r(m− 1),

that is r ≤ m. Hence

f∗ω(X,A)/(S,L)(ω
⊗m−1
(X,A)/(S,L) ⊗H⊗m2−1)

is weakly positive. m2−1 and H are constants independent of choice of an ample invertible

sheaf H. Thus Viehweg’s lemma([Vieh]) implies that

f∗ω⊗m
(X,A)/(S,L)

is weakly positive.

3 Abundance of a canonical divisor

If dim Y < dim X and ω(Y,A) is weakly positive，there exists a variety Ym which is bira-

tionally equivalent to Y and which has only Q-factorial and terminal singularities such

that ω(Ym,AYm ) is abundant by induction argument. Minimal model program impies that

If ωY is weakly positive，one has κ(ωY ) ≥ 0.

If ω(Y,A) is not weakly positive，Y is uniruled.

When Y is uniruled, there exists the rational quotient R such that a general fibre of Y/R

is rationally connected([Ko2]).

Proposition 3.1. If f : (X, A) → (S, L) is a fibre space，κ(ω(X,A)/(S,L)) ≥ 0 and

dim X/S = 1，then the canonical homomorphism f ∗f∗ω⊗m
(X,A)/(S,L) → ω⊗m

(X,A)/(S,L) (m > 0)

is surjective and ω(X,A)/(S,L) is f -abundant.
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Proof. Since κ(ω(X,A)/(S,L)) ≥ 0, dim X/S = 1，a general fibre of ω(X,A)/(S,L) is abundant.

R1f∗ω⊗m
(X,A)/(S,L) is torsion free(Nakayama([Nak])). Hence rankf ∗f∗ω⊗m

(X,A)/(S,L) is constant

over each point of a curve which passes through arbitraly two points of S. f∗ω⊗m
(X,A)/(S,L)

is compatible for base change. Since dim X/S = 1, ω(X,A)/(S,L) is f -abundant.

Corollary 3.2. Let f : (X,A) → (S, L) be a fibre space and assume that there exists

a Q-big invertible sheaf L such that κ(ω(X,A)/(S,L)) ≥ 0, κ(ω(S,L)) ≥ 0 and by induction

assumption, ω(S,L) is nef(resp. abundant), then ω(X,A) is nef(resp. abundant).

Proof. Let C be a curve on X. If f(C) is a point, the intersection number of C and

ω(X,A)/(S,L) is non negative since ω(X,A)/(S,L) is f -abundant. If f(C) is a curve, then

f∗ω⊗m
(X,A)/(S,L) (m > 0) is nef. Hence the intersection number between C and ω(X,A)/(S,L) is

non negative. Hence that of C and ω(X,A) is also non negative.

Lemma 3.3. Let X/P1 be a fibre space. Assume that ω(X,A) is weakly positive. Then

κ(ωX) ≥ 0

Proof. There exists a Q-big sheaf L such that κ(ω(X,A)/(S,L)) ≥ 0, κ(ω(S,L)) ≥ 0 for a fibre

space f : X → P1 and there exists an integer m > 0 such that f∗ω⊗m
(X,A)/(S,L) is weakly

positive. That is, f∗ω⊗m
(X,A) is weakly positive for some m > 0.

There exists the canonical homomorphism f ∗f∗ω⊗m
(X,A) → ω⊗m

(X,A). Since f ∗f∗ω⊗m
(X,A) =

⊕kOP1(jk), jk ≥ 0, κ(ω(X,A)) ≥ 0.

Theorem 3.4. Let X be a non singular projective variety. If ω(X,A) is weakly positive,

then κ(ω(X,A)) ≥ 0.

Proof. Emmbed X into a projective space and choose a suitable center in the projective

space. Desingularizing X, one has a Lefschetz pencil.

Theorem 3.5. Let f : X → S be a fibre space with ω(X,A) weakly positive and var(X/S) =

dim S. Then there exists a big Q invertible sheaf L over S such that κ(⊗ω(X,A)/(S,L)) ≥ 0

and κ(ω(S,L)) ≥ 0.

Proof. Since ω(X,A) weakly positive, κ(ω(X,A)) ≥ 0. Iitaka’s lemma implies that κ(ω(X,A)|η) ≥
0 for the geometric generic point η of X. By inductive assumption the geometric generic

fibre has a model satisfying an abundant conjecture. By Kawamata’s theorem and its

version there exists a number m > such that κ(det f∗ω⊗m
(X,A)/S) ≥ var(X/S). Hence one

can find a big Q invertible sheaf L over S such that κ(ω(X,A)/(S,L)) and κ(ω(S,L) ≥ 0 since

κ(ω(X,A)) ≥ 0. Taking a relative Lefschetz pencil from X/S repeatedly, one obtains a

fibre space X/S1 of dim X/S1 = 1. Then there exists a big Q sheaf L1 over S1 such that

κ(ω(X,A)/(S1,L1)) and κ(ω(S1,L1) ≥ 0. Choose an abundant model S1 by inductive hypoth-

esis. Then one can find an abundant model X1 birationally equivalent to X by applying

lemmas above for curves family X1/S1.
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3.1 Uniruledness

Lemma 3.6 (Rationality). Assume that KX is not weakly positive and that D is big.

Then t0 = inf{0 < t ∈ Q; KX + tDis weakly positive} is a rational number. Furthermore,

dim X > κ(KX + t0D) ≥ 0.

Proof. Put t0 = inf{0 < t ∈ Q; KX + tDis weakly positive}. If t0 is a rational number,

the lemma above implies κ(KX + t0D) ≥ 0. If κ(KX + t0D) = dim X, then Kodaira’s

lemma implies that there exists an 0 < ε ∈ Q such that κ(KX + t0D− εD) ≥ 0, which is

a contradiction. Hence dim X > κ(KX + t0D) ≥ 0.

Assume that t0 /∈ Q. Approximate a rational number t2 such that t2 > t0. Then κ(KX +

t2D) = dim X. Put D′ = ε(KX + t2D)+D for a rational number ε > 0. Set τ0 = inf{0 <

t ∈ Q; KX + tD′}. Clearly τ0 < t0. Hence there exists a rational number t3 such that

τ0 < t3 < t0. Since κ(KX + t3D
′) = κ(KX + t3(ε(KX + t2D) + D) = dim X and since

KX + t3(ε(KX + t2D) + D) = (1 + t3ε)KX + t3(εt2 + 1)D, one has the ratio between

the coefficients of KX and D, τ =
t3(1 + εt2)

1 + t3ε
. If 0 < ε ∈ Q tends to zero, this ratio

tends to τ → t3. Hence there exists a rational number ε > 0 such that τ < t0. This is a

contradiction.
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t. 25, pp. 465-514(1992).

[Breen2] Breen, L., On the classification of 2-gerbes and 2-stacks, 225 Astérisque Société
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