
Capture components for cubic polynomials with
parabolic fixed points
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The parameter space for a family of cubic polynomials with parabolic fixed points of multiplier one
is investigated. Especially, the dynamics on the boundaries of the capture components is revealed.

1 Introduction

In this note, we will investigate the dynamics of the family

Per1(1) : Pa(z) = z3 + az2 + z, a ∈ C.

of cubic polynomials with parabolic fixed point 0 of multiplier one. Especially we will
study the paramater space of our family. One of the two critical points of the map Pa

belongs to the immediate basin B∗a(0) of the parabolic fixed point 0. The dynamics of Pa

is completely determined by the behaviour of the orbit of another critical point. We are
much interested in the parameters for which both critical points belong to the basin Ba(0).
We call here the set of such parameters the parabolic set and its connected component a
parabolic component.

Our family Per1(1) in cubic polynomials has been investigated by many authors.
Douady-Hubbard [DH] studied the discontinuity of the straightening map of cubic-like
maps on Per1(1). Milnor [M1] considered the family of real cubic polynomials and con-
jectured the non-local connectivity of the cubic connectedness locus. Lavaurs [L] settled
this conjecture through the study of Per1(1). See also Epstein-Yampolsky [EY]. Thus
Per1(1) reflects the features of the cubic dynamics much different from the quadratic one.

Willumsen [W] gave necessary conditions for stretching rays to accumulate on a map
in the main parabolic component of Per1(1). Inspired by her work, the author showed,
in the joint work [KN] with Y. Komori that, in a certain region of the space of real cubic
polynomials, most stretching rays have non-trivial accumulation sets on the real slice of
the main parabolic component of Per1(1). In fact, they oscillate wildly as they approach
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Per1(1). In order to study stretching rays in non-real regions, we have to reveal the
structure of those parabolic components. This note is a first step toward this aim. And
we will investigate the dynamics on the boundaries of the capture components.

2 Connectedness locus

Note that critical points of the map Pa :

c±(a) =
−a±√a2 − 3

3
=

a

3

(
−1±

√
1− 3/a2

)
.

are two branches of a two-valued holomorphic function on C. It branches at a = ±√3. Or
they are holomorphic functions on the double covering space of C− {±√3}. In order to
consider them on C, we must fix their branches. Since c±(a) are holomorphic for large |a|,
we fix such branches. Then they are single-valued holomorphic in C − [−√3,

√
3]. Note

that they are replaced by each other when we go through the slit [−√3,
√

3]. On this slit,
both critical points belong to B∗a(0). Thus the slit is included in the connectedness locus.
Since they have the following asymptotic behaviours near a = ∞ :

c+(a) = − 1

2a
+ O(

1

a3
), c−(a) = −2a

3
+ O(

1

a
),

the critical values satisfy

Pa(c+(a)) = O(
1

a
), Pa(c−(a)) ≈ 4a3

27
.

Thus, for large |a|, c−(a) escapes to ∞ and c+(a) is contained in B∗a(0).

Lemma 2.1. The connectedness locus M1(1) of the family Per1(1) is characterized by

M1(1) = {a ∈ C; c−(a) ∈ Ka = K(Pa)}.

In C−M1(1), the unique indifferent cycle 0 is persistent. Hence Pa is J-stable there.
Actually we have

Lemma 2.2. The complement of ∂M1(1) is the set of parameter a such that Pa is J-
stable.

proof. Note that Pa is J-stable if and only if the family {P k
a (c±(a); k ≥ 0} forms a

normal family in a neighborhood of a. If we put ma = 3max(|a|, 1), it follows Ka ⊂ Dma .
Thus, if a ∈ IntM1(1), both critical points are contained in Dma and Pa is J-stable by
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Montel’s theorem. If a ∈ ∂M1(1), Pa is not J-stable since {P k
a (c−(a))} is not normal.

This completes the proof. 2

Now let c̃−(a) be the co-critical point of c−(a). It satisfies Pa(c̃−(a)) = Pa(c−(a)). If
ϕa denotes the Böttcher coordinate of Pa, ϕa(c̃−(a))3 = ϕa(Pa(c̃−(a))) ≈ 4a3/27. Thus,
if we put Φ(a) = 3ϕa(c̃−(a))/ 3

√
4, we have

Proposition 2.1. Φ : C − M1(1) → C − D3/ 3√4 is a conformal isomorphism satisfying

lima→∞ Φ(a)/a = 1.

Corollary 2.1. M1(1) is connected.

Now, external rays are defined for M1(1) and we can discuss their landing properties.
Note that the correspondence between the parameter space and the dynamical plane is
done through the co-critical point.

3 Conformal position maps

In this section, we will show that every parabolic components are simply connected. For a
parabolic component W , the critical point c+(a) always belongs to B∗a(0) and there exists
k ≥ 0 such that P k

a (c−(a)) first hits B∗a(0). We call such k the preperiod of W . W is called
a capture component if k > 0. If k = 0, that is, if both critical points are contained in
B∗a(0), W is called an adjacent component. It turns out that there are only two adjacent
components, each containing

√
3 or −√3.

Let W be a parabolic component of preperiod k. In order to study the global topology
of parabolic components, we use the conformal position map m after Zakeri [Z]. Let
ψa : D → B∗a(0) be the Riemann map satisfying ψa(0) = c+(a), ψa(1) = 0. We define
m : W → D by m(a) = ψ−1

a (P k
a (c−(a))).

Lemma 3.1. For any capture component W , ψa depends holomorphically on a ∈ W .

proof. Consider the map Ra = ψ−1
a ◦Pa◦ψa : D→ D. Since it is a proper holomorphic

map between D, it is a Blaschke product of degree two with critical points 0 (and∞). Since
Ja is locally connected, ψa can be continued to a continuous map D→ B∗a(0). Because of
the maximum principle, it must be injective on ∂D. Thus ∂B∗a(0) is a Jordan curve and
ψa : D → B∗a(0) is an onto homeomorphism. Then ψa conjugates Pa to Ra also on ∂D.
Hence J(Ra) = ∂D and 1 is a fixed point. Since points on ∂D are not attracted by 1, 1 is
not attracting but parabolic with multiplier one. Since Blaschke product is commutable
with the map z 7→ 1/z, C−D is also the basin of 1 and 1 has multiplicity three. That is,

R′′
a(1) = 0. Now it is easy to see that Ra(z) ≡ R(z) =

z2 + 1/3

1 + z2/3
, which is independent of
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a. ψa maps each point on the inverse orbit by R of 1 to the point on the inverse orbit by
Pa of 0, which moves holomorphically on a. Thus ψa ◦ ψ−1

a0
gives a holomorphic motion

of the inverse orbit of 0. By the λ-lemma, it continues to to a holomorphic motion of
∂B∗a(0). Hence, ψa ◦ψ−1

a0
on ∂B∗a(0), and consequently ψa on ∂D depends holomorphically

on a. Now, by the Poisson formula, ψa on D depends holomorphicall on a. 2

Thus the map m : W → D is holomorphic for any capture component.

Lemma 3.2. For any capture component W of preperiod k, m : W → D is proper.

proof. Suppose an ∈ W tends to a0 ∈ ∂W and m(an) → m0 ∈ D. By Montel’s
theorem, we may assume ψan converges to a conformal map ψ0 locally uniformly on D.

Then ψ0(Dr) ⊂ B∗a0
(0) for any r < 1. In fact, if there exist an r < 1 and a point

w1 ∈ ψ0(Dr)∩Ja0 , then, for any r′ > r, ψ0(Dr′) is an open neighborhood of w1 and contains
a repelling periodic point w0 of Pa0 . This point is locally holomorphically continued to a
repelling periodic point w(a) of Pa. Thus w(a) ∈ Ja ∩ ψ0(Dr′) for any a close to a0. On
the other hand, since ψan(Dr′′) → ψ0(Dr′′) for any r′′ > r′, ψ0(Dr′) ⊂ ψan(Dr′′) holds for
large n. Thus Jan does not intersect ψ0(Dr′) for large n. This is a contradiction. Thus
ψ0(D) ⊂ B∗a(0).

Now P k
a0

(c−(a0)) = limn→∞ ψan(m(an)) = ψ0(m0) ∈ B∗a0
(0), which implies a0 is

parabolic. This contradicts the fact a0 ∈ ∂W . This completes the proof. 2

Lemma 3.3. Let W be a capture component of preperiod k and a, b ∈ W . Suppose a
qc-map ϕ : C→ C conjugates Pa on C−Ba(0) to Pb on C−Bb(0). If m(a) = m(b), then
there exists a qc-conjugacy ψ on C between Pa and Pb such that ψ is conformal on Ba(0)
and coincides with ϕ on C− Ba(0).

proof. Since Ra ≡ R, the map ψ = ψb ◦ψ−1
a gives a conformal equivalence betwee Pa

on B∗a(0) and Pb on B∗b (0). From the assumption m(a) = m(b), we have ψ(P k
a (c−(a))) =

P k
b (c−(b)). Hence ψ can be holomorphically continued to Ba(0) by ψ = P−n

b ◦ ψ ◦ P n
a .

Recall that the maps ψa and ψb can be extended to the homeomorphisms from D onto
B∗a(0) and B∗b (0) respectively. Since ψ = ϕ on the inverse orbit of 0, ψ = ϕ holds also
on ∂B∗a(0). Pulling back by Pa, the same holds on Ja = ∂Ba(0). If we extend ψ to the
complemen of Ka by ψ = ϕ, ψ : C → C is a homeomorphism. Then ψ is a qc-map by
Rickman’s theorem. 2

Proposition 3.1. For every capture component of preperiod k, m : W → D is a confor-
mal isomorphism.

proof. We have only to show the injectivity of m. Suppose m(a) = m(b). Using
Böttcher coordinates, the conformal equivalence ϕa,c = ϕ−1

c ◦ ϕa gives a holomorphic
motion of C −Ka. By the optimal λ-lemma of Slodkowski [Sl], this can be extended to
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the holomorphic motion ϕa,c of C. We apply the previous lemma to ϕ = ϕa,b. Then there
exists a qc-conjugacy ψ between Pa and Pb on C, conformal on Ba(0) and coincides with
ϕ on C−Ba(0). Since ψ is a qc-map on C and conformal except on the measure zero set
Ja, it is conformal on C. Thus Pa is conformally conjugate to Pb on C. Then a = b. This
completes the proof. 2

Corollary 3.1. Every capture component is simply connected.

4 Boundaries of capture components

In this section, we give some properties of the boundaries of capture components.

Lemma 4.1. Suppose a0 6= 0. If the external ray Ra0(t) of Pa0 with angle t = p/3k or
t = p/(2 ·3k) lands at z0 ∈ Ja0 and P n

a0
(z0) is not a critical point for any n ≥ 0, then there

exists an open neighborhood U of a0 such that, for any a ∈ U , Ra(t) lands at a repelling
or parabolic preperiodic point za. The landing point za depends holomorphically on a in
U .

Lemma 4.2. The external rays RM(t) of M1(1) with angles t = ±1/6,±1/3 land at the
origin.

proof. The external rays Ra(0) and Ra(1/2) land at fixed points of Pa if they do not
meet the critical point c−(a). If Ra(0) (resp. Ra(1/2)) meets c−(a), then one of Ra(±1/3)
(resp. one of Ra(±1/6)) meets the co-critical point c̃−(a), i.e. a lies on one of RM(±1/3)
(resp. one of RM(±1/6)). In other words, Ra(0) (resp. Ra(1/2)) lands at a fixed point 0
or −a unless a belongs to RM(±1/3) (resp. RM(±1/6)). Thus, at the accumulation point
a0 of RM(±1/3) (resp. RM(±1/6)), the landing of Ra(0) (resp. Ra(1/2)) is unstable. On
the other hand, Lemma 4.1 implies those stabilities at a0 6= 0. Thus those rays must land
at the origin. 2

The four rays RM(±1/3) and RM(±1/6) and their landing point 0 separate the pa-
rameter space into four parts. In the region R1 bounded by RM(−1/6) and RM(1/6),
RM(0) (resp. RM(1/2)) lands at 0 (resp. −a). In the region R3 bounded by RM(1/3) and
RM(−1/3), RM(1/2) (resp. RM(0)) lands at 0 (resp. −a). In the remaining two regions
R2 and R4, RM(0) and RM(1/2) land at 0.

Lemma 4.3. For a point a on the boundary of a parabolic component W , Pa has neither
Siegel disks nor Cremer cycles.

proof. If Pa0 has a Siegel or Cremer periodic point z0, then evidently a0 6= 0. By
Lemma 3.3 of Kiwi [K], z0 and B∗a0

(0) are separated by a union R of a finite collection of
closed preperiodic external rays and R separates the orbits of critical points. Note that
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preperiodic external rays must land at repelling or parabolic preperiodic points. Since
Pa0 has no other non-repelling cycles, the landing points of the rays in R are repelling
except at 0. By the previous lemma, landing of those rays is stable around a0. Hence,
the same holds for a ∈ W close to a0. But, in W , the orbit of c−(a) hits B∗a(0) after finite
iteration. This is a contradiction. 2

We will show that, if W is capture, Pa has no parabolic cycles except 0. Suppose W is
capture and a ∈ W . Since Ka is pathwise connected, there is a path γ connecting c−(a)
to c+(a). We denote za the point where γ first hits ∂B∗a(0). Since Ka is full, za is uniquely
determined independent of the choice of γ. Since Ka is locally connected, at least two
external rays land at za. Among them, we take two rays Ra(t1) and Ra(t2) separating
c−(a) from B∗a(0) and consider the sector S0 bounded by these two rays and za, containing
c−(a). In the following, we use the theory of orbit portraits developed in Milnor [M2].
We denote by Aa(z) the set of angles of external rays of Pa landing at z.

Lemma 4.4. Let W be a capture component of preperiod k and a ∈ W . Then za is a
periodic point of period m ≤ k.

proof. Suppose za is not periodic. Put zj = P j
a (za) and let Sj be the succesive image

sectors of S0 at zj bounded by Ra(3
jt1) and Ra(3

jt2). (Note that Pa(S0) covers C and
doubly covers S1.) Then, since Sj contains no critical points, it does not intersect B∗a(0)
for any j ≥ 1. But its angular length 3j(t2 − t1) eventually becomes greater than one, a
contradiction. 2

Apparently za is repelling unless it is 0. If W ⊂ R1 or W ⊂ R3, za 6= 0 for any a ∈ W .

Lemma 4.5. The point za is repelling also on ∂W unless it is 0.

proof. Suppose za0 is not repelling for some a0 ∈ ∂W . It must be parabolic by
Lemma 4.3. Then, as a ∈ W tends to a0, za meets other repelling periodic points, say
za,j, 1 ≤ j ≤ k. Then Aa0(za0) is the union of Aa(za) and Aa(za,j). By the theory of orbit
portraits, this happens only if k = 1 and the combinatorial rotation number at za0 is 0,
i.e. za0 has just two angles. This contradicts the fact that za has at least two angles. 2

The above proof implies that, if za 6= 0 for a ∈ W , the same holds also for a ∈ ∂W .

Lemma 4.6. Suppose za 6= 0 for a ∈ W . Then Aa0(za0) = Aa(za) holds for a0 ∈ ∂W
and a ∈ W .

proof. It follows za0 6= 0. Since za0 is repelling by Lemma 4.5, so is za for any a ∈ W
close to a0. By stability, it follows Aa0(za0) ⊂ Aa(za). If Aa0(za0) 6= Aa(za), there exists
t ∈ Aa(za) such that Ra0(t) lands at some point wa0 6= za0 . By stability, wa0 must be
parabolic. Evidently wa0 6= 0. Then, for a ∈ W , the corresponding point wa 6= za is
repelling and has angle t, a contradiction. 2
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From the three lemmas above, it follows that, if za 6= 0 in W , the rays landing at za

separate c−(a) and B∗a(0) for any a in a neighborhood W ′ of W . Since c−(a) 6= za, we
conclude that c−(a) does not belong to an open neighborhood Ua of B∗a(0) for any a ∈ W ′.
Put U ′

a = Ua − ∪m−1
j=0 Sj and U ′′

a = Ua ∩ P−1
a (Ua) − ∪m−1

j=0 P−1
a (Sj). Then Pa : U ′′

a → U ′
a

is proper holomorphic. By thickening, we get a quadratic-like map Pa : Va → V ′
a. By

straightening, this map is hybrid equivalent to a quadratic polynomial p. Since Pa has a
parabolic fixed point 0 of multiplier one, p(z) = z2 + 1/4.

Capture component W where za = 0 sits in the region R2 or R4. In this case, two
rays Ra(0) and Ra(1/2) stably lands at za = 0. Another fixed point z0 = −a is separated
by these two rays from c+(a). We take a path γ in Ka connecting z0 to 0.

Lemma 4.7. There exists a sequence of points on the inverse orbit of z0 converging to 0.

proof. First note that γ is not included in a Fatou component. Otherwise, that
component is invariant since 0 has combinatorial rotation number 0.

Suppose γ does not intersect any Fatou components. Then, since it does not contain
c−(a), Pa is injective on γ. Then Pa(γ) = γ since Pa fixes its endpoints. Because Pa is
repelling near both endpoints, Pa must have another fixed point in the interior of γ, a
contradiction.

Thus γ intersects both the Fatou set and the Julia set. The rotation number of z0

is not 0 since 0, 1/2 /∈ Aa(z0). Hence, the local image of γ around z0 is another branch.
Thus there exists a preimage z1 ∈ γ of z0. Let γ1 be the subpath of γ connecting 0 to
z1. Suppose Pa(γ1) does not contain z1. Since the regions bounded by γ and Pa(γ1) is
included in Ka, z1 is on the boundary of a Fatou component. Then z0 is also on the
boundary of a Fatou component U . Since U is periodic, U is a periodic Fatou component,
a contradiction. Thus there exists a preimage z2 ∈ γ1 of z1. Repeating this argument, we
get a sequence zj ∈ γ on the inverse orbit of z0. Since its accumulation point is a fixed
point, it must be 0. This completes the proof. 2

By the same proof of Lemma 4.5, it follows that z0 is repelling for a ∈ ∂W . Moreover,
at least two rays land at z0. Hence the same is true for zj. Using these rays, we get a
quadratic-like map Pa : Va → V ′

a, hybrid conjugate to p. We do not need thickening in
this case. Especially, since ∂B∗a(0) is homeomorphic to J(p), we get the following.

Proposition 4.1. Let W be a capture component. Then ∂B∗a(0) is locally connected in a
neighborhood W ′ of W .

Corollary 4.1. Let W be a capture component. Then the Riemann map ψa : D→ B∗a(0)
depends holomorphically on a in W ′.

proof. The same proof of Lemma 3.1 works since we only use the local connectivity
of ∂B∗a(0).
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Lemma 4.8. Let W be a capture component of preperiod k. Then P k
a (c−(a)) ∈ ∂B∗a(0) if

a ∈ ∂W .

proof. Since a 7→ ∂B∗a(0) is a holomorphic motion on U , it is continuous with respect
to the Hausdorff distance. For a ∈ W , we have P k

a (c−(a)) ∈ B∗a(0). By continuity,
P k

a (c−(a)) ∈ B∗a(0) for a ∈ ∂W . Since P k
a (c−(a)) /∈ B∗a(0) for a ∈ ∂W , the lemma follows.

2

Corollary 4.2. Let W be a capture component. Then, for a ∈ ∂W , Pa has no parabolic
cycle except 0.

Corollary 4.3. The map m : W → D extends to a continuous surjective map m : W →
D. If, in addition, ∂W is locally connected, then m : W → D is a homeomorphism.

proof. In order to prove the surjectivity of m, we define the internal ray in W as the
inverse image of a ray in D by the map m. For any point w0 = e2πit ∈ ∂D, consider the
internal ray RW (t) ≡ m−1({re2πit; 0 ≤ r < 1}). We do not know whether this ray lands
or not on ∂W . Take any accumulation point z0 = limn→∞ m−1(rne2πit) ∈ ∂W . By the
continuity of m, it follows m(z0) = e2πit = w0.

If ∂W is locally connected, m−1 has a continuous extension to D. Then m−1 is the
inverse of m also on ∂D. This completes the proof. 2
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