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In this note, the dynamics of holomorphic maps in C2 which are tangent to the identity at the origin
is investigated. The origin is a parabolic fixed point. A condition to assure the existence of attractive
basins is examined.

1 Introduction

In this note, we shall investigate the dynamics of holomorphic maps in C2 tangent to the
identity. That is, we consider the maps of the form:

F (x, y) = (f1(x, y), f2(x, y)) : C2 → C2,

where

f1(x, y) = x + p2(x, y) + p3(x, y) + · · ·
f2(x, y) = y + q2(x, y) + q3(x, y) + · · ·

are homogeneous expansions at the origin. The origin is a fixed point of F and is parabolic
since both of the eigenvalues of the jacobian matrix of F at the origin are 1.

In case of one variable, such a point has an open set B where all orbits converge to the
point. We call such an open set an attractive basin of the parabolic fixed point. This is not
true in case of several variables. To see this, just consider a polynomial automorphism of
C2. Since such a map has constant jacobian, the jacobian must be 1 if it has a parabolic
fixed point with both eigenvalues 1. Then the map is volume preserving and cannot have
attractive basins.

So it is an interesting question when an attractive basin exists for a parabolic fixed
point and there are several works. Weickert [W] has first shown the existence of attractive
basins for an automorphism of C2 of the form F and investigated the global dynamics in
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the basin. He used the argument of Ueda [U], who investigated the semi-attractive case,
that is, eigenvalues are 1 and b with |b| < 1. Hakim [H] generalized the work of Weickert
to a wider class of maps. See also Abate [A].

To state their results, we need some notations. We assume the quadratic part F2(x, y) =
(p2(x, y), q2(x, y)) does not identically vanish. A characteristic direction is a direction
v ∈ C2 − {(0, 0)} such that F2(v) = λv for some λ ∈ C. It is non-degenerate if
F2(v) 6= (0, 0) and degenerate otherwise.

Note that a non-degenerate characteristic direction [v] is exactly a fixed point of the
rational map R([x : y]) = [p2(x, y) : q2(x, y)] in P1(C). The residual index ι(R, [v]) is
defined as the residue fixed point index (cf. Milnor [M]) of the map R at its fixed point
[v]. A degenerate characteristic direction is a point of indeterminacy of R.

These notions do not depend on the choice of local coordinates. So we may take

v = (1, u). Put r(u) =
q2(1, u)

p2(1, u)
. Then v = (1, u0) is a characteristic direction if and only

if u0 is a root of r(u) = u, that is, a fixed point of r, and the residual index is calculated
as follows :

ι(r, u0) =
1

2πi

∫

|u−u0|=ε

du

r(u)− u
.

If r′(u0) 6= 1, then ι(r, u0) =
1

r′(u0)− 1
.

An orbit (xn, yn) converges to the origin along the direction v if

lim
n→∞

[xn : yn] = [v] in P1(C).

Now we can state the result of Hakim.

Theorem 1.1. (Hakim [H]) Suppose v is a non-degenerate characteristic direction for F
and Re ι(R, [v]) > 0. Then there exists an attractive basin B where all orbits converge to
the origin along the direction v.

We will examine the necessity of the assumption on the residual index of v.

2 A family of maps

Consider the following maps in C2.

Fc(x, y) = (x + x2, y + cxy), c ∈ C.

Note that Fc with c = 2 is just the 2-jet of the maps studied in [W].
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Since p2(x, y) = x2, q2(x, y) = cxy, its characteristic directions are exactly (1, 0) and
(0, 1). The former is non-degenerate while the latter is degenerate. We calculate the index
of (1, 0). Since

r(u) =
q2(1, u)

p2(1, u)
= cu,

ι(r, 0) =
1

c− 1
if c 6= 1. Then Theorem 1.1 says that an attractive basin of the origin

exists if Re c > 1 and that all orbits in this basin tend to the origin along the direction
(1, 0).

We can completely determine when a basin exists for the map Fc. Put p(x) = x + x2.

Theorem 2.1. The origin has an attractive basin B if and only if Re c > 0. B is equal
to B(p) × C, where B(p) denotes the attractive basin of the parabolic fixed point 0 of p.
All orbits in B converge to the origin along the direction (1, 0) or (0, 1), if Re c > 1 or
0 < Re c < 1, respectively.

Hence, the assumption of Theorem 1.1 is necessary if we take the direction into account.
But attractive basins still exist even in a weaker assumption.

We also note that Abate [A] has shown the existence of a “stable manifold” without
any assumptions on characteristic directions assuming that the origin is isolated in the
fixed point set of F . In our case, the fixed point set of Fc is the y-axis and the origin is
not isolated.

Note that the orbit (xn, yn) = F n
c (x, y) of (x, y) is expressed by

xn = pn(x),

yn = y

n−1∏

k=0

(1 + cxk).

First we consider the dynamics of p in the x-plane. It has a parabolic fixed point at 0.
The interior of the filled-in Julia set K(p) of p is equal to the basin B(p) of 0. But we
need the asymptotic behaviour of the orbit xn in order to study the behaviour of yn.

Lemma 2.1. For x ∈ B(p), xn = − 1

n
+ O(

log n

n2
).

proof. Consider the well known Fatou coordinate of 0. By the coordinate change
x 7→ z = −1/x, the dynamics of p around 0 is conjugate to the dynamics of the map

g(z) = z + 1 +
∞∑

k=1

1

zk
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around ∞. So any orbit in the basin of ∞ eventually enters the region Re z > C0 for
some large C0. Since Re g(z) > Re z+1/2 in this region, we may assume Re gn(z) > n/2.
Put φn(z) = gn(z)− n− log n for n ≥ 1 and φ0(z) = z. We will show that φn converges
to a map φ in the basin. By the form of g above, it follows

φn+1(z)− φn(z) = g(gn(z))− gn(z)− 1− log
1 + n

n

=
∞∑

k=1

1

(gn(z))k
− log(1 +

1

n
)

= O(
1

n
).

Thus there exist M and M ′ such that for n ≥ 1 we have

|φn(z)− z| ≤
n−1∑

k=0

|φk+1(z)− φk(z)| ≤ M ′
n−1∑

k=1

1

k
≤ M log n.

This holds also for n = 0. Then we can improve the estimate above:

φn+1(z)− φn(z) =
1

gn(z)
− log(1 +

1

n
) + O(

1

(gn(z))2
)

=
1

n + log n + φn(z)
− 1

n
+ O(

1

n2
)

= O(
log n

n2
).

And the limit exists :

φ(z) = lim
n→∞

φn(z) = z +
∞∑

k=0

(φk+1(z)− φk(z)).

Hence gn(z) = n + log n + φn(z) = n + log n + O(1). By the relation xn = −1/gn(z), the
assertion easily follows. This completes the proof.

Now we consider the sequence yn. Theorem 2.1 follows immediately from the next
lemma.

Lemma 2.2. Suppose x ∈ B(p). Then there exist constants A,B > 0 such that for any
y 6= 0,

A|y|n−a ≤ |yn| ≤ B|y|n−a, a = Re c.
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proof. If we put c = a + bi, we have, by the above lemma 2.1,

|1 + cxk| = |1− a + bi

k
+ O(

log k

k2
)|

= (1− a

k
) · (1− bi

k
+ O(

log k

k2
))

= (1− a

k
) · (1 + O(

log k

k2
)).

Note that this is true even if a = 0. Thus it follows

n−1∏

k=0

|1 + cxk| = |1 + cx|
n−1∏

k=1

(1− a

k
)

n−1∏

k=1

(1 + O(
log k

k2
)) ³

n−1∏

k=1

(1− a

k
).

Since

log
n−1∏

k=1

(1− a

k
) =

n−1∑

k=1

log(1− a

k
) =

n−1∑

k=1

(−a

k
+ O(

1

k2
)) = −a log n + O(1),

we have
n−1∏

k=1

(1− a

k
) ³ n−a

Now the lemma follows easily. This completes the proof.

Lemma 2.2 also says that, in case Re c = 1, the direction of an orbit to the origin
depends on the initial point.

By the same argument, it follows

n−1∏

k=j+1

(1− a

k
) ³ (

n

j
)−a,

which will be used later.

3 A perturbation

In this section, we consider a perturbation of the map Fc in the previous section. That
is, consider the map:

F̃c(x, y) = (x + x2 + f(x), y + cxy + h(x)),

where f and g are holomorphic functions of x around the origin and satisfies f(x) =
O(x3), h(x) = O(x2). It turns out that the same result holds for this map.
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Theorem 3.1. The origin has an attractive basin B if and only if Re c > 0. All orbits
in B converge to the origin along the direction (1, 0) or (0, 1) if Re c > 1 or 0 < Re c < 1,
respectively.

Perhaps the most interesting case is f(x) = 0 and h(x) = x2. In this case, there are
two characteristic directions (1, 1/(1 − c)) and (0, 1). The former is non-degenerate and
its index is 1/(c− 1), while the latter is degenerate.

We will prove Theorem 3.1 only in case 0 < Re c < 1. Put p̃(x) = x+x2 +f(x). Then
the same fact as in Lemma 2.1 holds. The proof is also the same.

Lemma 3.1. For x ∈ B(p), xn = − 1

n
+ O(

log n

n2
).

We need to estimate yn. It is expressed by

yn =
n−1∑
j=0

h(xj)
n−1∏

k=j+1

(1 + cxk) + y

n−1∏

k=0

(1 + cxk) ≡ I1 + I2.

Put Ω = g̃−1({z ∈ C; Re z > K}) for large K, where g̃ corresponds to the map g in
Lemma 2.1. Then, Ω ⊂ B(p) and xk ³ −1/(k + K) for x ∈ Ω. We estimate

I =
n−1∏

k=j+1

(1 + O(
log k

k2
)).

Note that for any small ε > 0, there exists C ′ > 0 such that

log I =
n−1∑

k=j+1

log(1 + O(
log k

k2
))

≤ C
n−1∑

k=j+1

log k

k2
≤ C ′

n−1∑

k=j+1

1

k2−ε

≤ C ′
∫ n

j

dx

x2−ε
=

C ′

1− ε
(

1

j1−ε
− 1

n1−ε
)

≤ C ′

(1− ε)K1−ε
.

So, if we take K sufficiently large, I is arbitrarily close to 1 and we may assume

n−1∏

k=j+1

|1 + cxk| ³
n−1∏

k=j+1

(1− a

k
).
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Suppose h(x) = hxr + O(xr+1) for some constant h 6= 0 and r ≥ 2. Then since h(xj) ³
(−j)−rh, it follows

|I1| = |
n−1∑
j=0

h(xj)
n−1∏

k=j+1

(1 + cxk)| ³ |h|
n−1∑
j=1

j−r

n−1∏

k=j+1

(1− a

k
)

³ |h|
n−1∑
j=1

j−r(
n

j
)−a = |h|n−a

n−1∑
j=1

ja−r

³ n−a.

Here we use the fact a− r ≤ a− 2 < −1 if 0 < a < 1. On the other hand, from Lemma
2.2, we have |I2| ≤ B|y|n−a. Thus, if we take |y| sufficiently small, yn ³ n−a and we finish
the proof in case 0 < Re c < 1.
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