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Position and Attitude Estimation

from a Image Sequence of a Circle

Machiko SATO*

ABSTRACT

A method to estimate the position and attitude of a helicopter with respect to the landing site

from a image sequence of a heliport is presented. The method use the circle of the heliport marking

as the visual cue. The projection of the circle on the successive image taken by on board camera

will change, therefore a Kalman filter can be build for the recursive estimation. The method needs

to know just there is a circle; The size of the circle is not necessary. The result of the experiment

on the synthetic data shows the method works well under several assumptions.

1. INTRODUCTION

Unmanned flight of a helicopter is strongly
expected because it can perform various criti-
cal tasks such as rescue and security opera-
tions, traffic monitoring, mountain fire fight,
and inspection of power transmission lines,
without exposing a human pilot to danger. In
autonomous flight, the estimation of the param-
eters that relate to the vehicle state should be
done by the instruments instead of a human
pilot. On-board GPS (Global Positioning Sys-
tem)/INS (Inertial Navigation System) or
ground-based beacon systems are generally
used for this purpose. However, as these sys-
tems are designed for long range, low precision
flight, the measurement accuracy does not meet
the requirements in certain missions. Recently,

the utilization of the images taken by on-board
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camera has been investigated to make up the
defects of the above-mentioned navigation sys-
tems [1], [2], [3], [4], [5].

The group of Carnegie-Mellon University
has been working on the object tracking task
by controlled flight of a helicopter, in which
they attempt to get more precise estimate of
the position and the velocity of a helicopter
from the displacement of consecutive images of
the ground in cooperating with attitude data
provided by Gyroscope [1], [2]. NASA Ames
Research Center use the image data to detect
and locate the obstacles in nap-of-the-Earth
flight mode [3], [4]. In their approach, the
vehicle state is computed by INS and provided
to the estimation process

The landing approach is also the task which
requires the accurate state estimation. We must
know precisely the relative position and atti-
tude between a vehicle and a desired landing

site to land a helicopter safely. A human pilot
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Fig.1 Heliport Marking

perform this by observing the ground scene
while both of the vehicle and the heliport need
to be fully equipped for automatic landing. The
images can be expected to provide much infor-
mation for this task.

In this study, we try to estimate the position
and the attitude of a helicopter from a image
sequence of a heliport. A circle is selected as
the visual cue because every heliports in Japan
ought to be marked by a circle and a character
‘H’ as shown in Fig. 1. We assume that we know
there is a circle but don’t know the size of the
circle. We also assume that the linear and
angular velocity of a helicopter can be obtained
by on-board sensors.

2. IMAGE GEOMETRY

We assume that the camera is mounted at the
center of gravity of the helicopter and oriented
with the viewing axis along the helicopter’s

longitudinal body axis. Fig 2 shows the viewing

Image
Plane

geometry of the camera. Let the image plane be
perpendicular to the viewing axis at a distance
f from the origin of the camera-axis (focal
length). Then the image coordinate of a point
on the ground are represented in camera coordi-

I‘late (X87 ySr ZS) as

= fxs/zs
(1)
Yy :fyS/Zs
3. STATE ESTIMATION FROM A IMAGE
SEQUENCE OF A CIRCLE

According to the image geometry mentioned
above, a circle on the ground is projected into
an ellipse when observed by an on-board cam-
era of a helicopter. The equation of a ellipse is
given by

Ax*+2Bxy+ Cy*+2/Ey+ fPF=0 (2)

in image coordinate (x, y) and 6 coefficients, A,
B, C, D, E, F are represented with s= (s1,52,53) %,
the vector from the center of the circle to the
helicopter, n= (#1,%2,73)°, the surface normal
vector of the plane on which the circle lies, and
r, the radius of the circle as
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Fig.2 Image geometry in the camera coordinate system
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E:Slznzns‘5351%1%2_5152%3%1+8283(1 - 7’l12) - 7’2742%3
F=s(1—n) +2s1semmat 52 (1 — ) — r2nsd

(3)

Because only the ratios between the coefficients
have physical significance, we divide both side
of Eq. (3) by C, the coefficient of y? term, to get

A +2B 2y +y*+ 2D x+2/E y+ A F =0 (4)

A=A/C
B'=B/C
D'=D|C (5)
E'=EJC
F'=F/C

Now, the problem may be formulated as fol-
lows. “Estimate s, n and r by observing 5
coefficients of ellipses (A’, B, D', E’, F’) on the
projected images.” The actual ellipse
coefficients will be diferent from the true value
due to the noise in the sensor and errors
introduced by the preprocessing (image enhan-
cement and feature detection). Let (An, Bu,
Du, Eun, Fu) be the measured coefficients of the

ellipse in the image, such that

A'n(t)=A(t) +na(t)
Bw(t)=B(t) +ns (1)
D'w(t)=D(t) +np(t) (6)
Ew(t)=E(t)+ns (1)
Fu(t)=F(t)+np (1)

where na, ng, np, ng, and nr represent noise of
imaging system. We assume these are indepen-
dent scalar white noise processes with standard
deviations e, 68, 6b, &, and or, respectively. In
vector notation, measured or actual ellipse

coefficients can be represented as
Z(t)=h(t) +&(1) (7

where

h(t)=(AB.DEF)"

é/z(t) - (nA’,nB',nD',?’lE',%p') T

and
(64> 0 0 0 07
0 0§52 0 0 0
R=cov(&L)=| 0 0 oo 0 0
0 0 0 0% 0
L0 0 0 0 GF'ZJ

The observed ellipse will move and change in
the shape on the image as the helicopter flies,
therefore measurements of ellipse coefficients
from successive image frames may be used to
build a Kalman filter for recursively estimating
the relative position and attitude of the helicop-
ter with respect to the circle in camera coordi-
nate. Because the measurements, Z, are non-
linear functions of the position vector (s), sur-
face normal vector (n) and the radius of the
circle, an extended Kalman filter must be used.
The Kalman filter considered in this study have

a linear continuous state model of the form
X=FWXW®+GHU®) +&x () (8)

where X is the state vector, U is the control
input, & is a continuous white noise with covar-
iance Q. (representing modeling uncertainty),
and F(t) and G(t) are time varying matrices.
Using a sampling interval of A7 s, (8) can be
replaced by the discrete form

X(k+1) =0 (k) X (k) +T (k) U(k) + & (k)
(9)

where k=:AT, F+1=0G+1DAT, i=1.23,--,®
(k) is the state transition matrix and " (%) is
the input distribution matrix. The matrices ®
(k) and T' (k) are computed numerically, except
in special cases. The & (k) is a discrete white
noise sequence with covariance Q@=@Q./AT.
Z(t)

The measurements are non-linearly
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related to the state through the vector function
h[X (¢)] and can be linearized to give the

measurement equation. Thus we have
Z(k)=hlXK)]+& k) (10)

Given the state equations (9) and the measure-

ment of the ellipse coefficientz Z (k) of (10), the

estimate X (k) and its error covariance matrix
can be computed recursively using the Kalman
filter.

The Kalman filter consists of two parts.

1) Measurement update: The measurement
update is done whenever a new measure-
ment is available. Prior to processing a new
measurement Z (k), we have the estimated
value of the state X and the covariances P
(k), Q(k), and R(k). The new measure-
ment improves the estimate of the state and
its covariance. The updated values are

X(E)=Xk)"+KE)[Zk) —h(X(k))]
Pk)=[1—K(k)H k)P k)"
(11)

where the matrix of partial derivatives
H (k) =0on(X)[0X (12)
and the Kalman filter gain K (k) is comput-
ed using
K (k)=
PEYH" (B)[H k) P(E)HT (k) +R (k)]
(13)
2) Time Update: This part of the filter
accounts for the system dynamics and prop-
agates the state and its covariance matrix

until the next measurement is made.

Xk+1D) =0k X (k) +T k) Uk)
Pk+1) =0k PE)Ok)T+T R QKT (KT
(14)

Here, we choose the relative position, s, and the
attitude (surface normal vector), n of the heli-

copter with respect to the circle in camera

coordinate and the circle radius as the state
vector. Thus:

X = (51,52,53,711,12,13,7) |
Then the matrices in the state equation (9), the

control input U and the noise are given as

follows.

r 0 —ps p2 0 0 07
D3 0 —p 0 0 0
—p: 0 0 0 0 0 0
F)=| 0 0 0 0 —ps p2 0
0 0 0 ps 0 —m 0
0 0 0 —p 0 0 0
L0 0 0 0 0 0 0

r1 0 07

010

001

G({)=[000

000

000

L0 0 0
U=v"=(n,vo,vs) " (15)

&=1(0,0,0,0,0,0,0) T
and (p1,p2,p3) T are the linear

and angular velocity of the helicopter in camera

where (v1,v2,v3) 7

coordinate provided by the on-board sensors.
The conversion of the continuous time-vary-
ing state model (8) to the discrete model (9) is
done assuming F (¢) and G(¢), and U(¢) to be
constant over a small interval of time AT.
Usually, this is done by numerical techniques,
however by the above assumption we can
derive the state transition matrix ® (£) and the
input distribution matrix T'(k) analytically.
The detailed form of these matrices are given

in Appendix.
4. EXPERIMENT ON SYNTHETIC DATA

The above estimation process was evaluated

on the computer-generated measurements, 5
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coefficients of the ellipses.

The measurement values of 5 coefficients of
the observed ellipse were calculated at each
time step as follows: We first calculate the
exact ellipse coefficients from the geometrical
relationship between the helicopter and the
circle with known camera parameters; then
add the measurement error. The error is
modeled by assuming that the position of the
pixel on the observed ellipse is contaminated by
zero-mean Gaussian noise with one (or two)
pixel covariance.

The assumed path of the helicopter is shown
in Fig. 3. The constant glide slope approach is
generally selected as the path for landing by
visual. The estimation process is started when
the helicopter reaches 300ft. altitude and we
assume the velocity along the track to be con-
stant.

Fig. 4 shows the typical convergence process
of the 7 state variables, the position of the
helicopter from the center of circle, the surface
normal vector of the circle-plane in camera
coordinate and the circle radius. Each compo-
nent of the position vector and the circle radius
are normalized by the altitude at which the task
starts (300ft.). We can see that after about 40
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steps, the process gives good estimation for the
variables. The deviation of the estimated values
are within 29§ of the exact value.

The numbers of steps required for the conver-
gence under the various initial conditions are
shown in Table 1. We assume that initial esti-
mation errors of the state variables are at most
409 of the exact value and generated them by
random process. Table 1 tells that the speed of
convergence greatly depends on the initial
state, although we have not found yet how it
does. The effect of the time interval between
time steps is also shown in this table. The
smaller time interval requires more steps for

convergence. This is because the assumed error
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model gives more accurate measurement as the
helicopter approaches to the destination (the
circle) and the process with the smaller time
interval requires the more numbers of steps to
reach the same position than that with larger
time interval.

The effect of the measurement accuracy was
investigated by using measurement error model
constructed with position error of 2 pixel covar-
iance. In Table 1 and 2, the case with the same
number were computed with the same initial
state. The more accuracy in the measurements

doesn’t always result in the faster convergence.
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Table 1
Required Number of Steps for Convergence
(1 pixel error model)

Time Interval (sec) 1/6 1/12
Case 1 35 62
Case 2 41 71
Case 3 17 15
Case 4 21 37
Case 5 31 51
Table 2

Required Number of Steps for Convergence
(2 pixel error model)

Time Interval (sec) 1/6
Case 1 40
Case 2 10
Case 3 30
Case 4 40
Case 5 31

5. CONCLUSION

A method to estimate the relative position
and attitude of a helicopter with respect to the
heliport from image sequence taken by on
-board camera was presented. The actual pro-
cedure for the estimation is
1) preprocessing (noise reduction, edge enhan-

cement, etc.)
2) detection of the ellipse in the scene
3) calculation of 5 coefficients of the detected
ellipse
4) estimation of the position, attitude, and the
circle radius by the above method
at each time step. We have shown the recursive
estimation process proposed here works well
under the measurement error of pixel position
on the circle modeled by a zero-mean Gaussian
noise with a one (or two) pixel covariance.
This model considers the error accompanied
with procedure 1) and 2). There are the other
factors that affect the measurement, such that
the width of the marking and the vibration of

the vehicle. These must be evaluated by work-
ing on the actual image data. We conducted the
laboratory experiment by constructing the
miniaturized environment and now work on the
data.

The estimation process requires pretty a lot
of steps for the convergence. However, this is
not unnatural because the human pilot continu-
ously updating their estimation by observing

the ground scene.
APPENDIX

The state transition matrix ® and the input
distribution matrix I" are given as follows when
the linear and angular velocity of the helicopter
are constant over a small interval of time AT.

The derivation can be found in [3] or [6].

[¢] [0] 0 ¢11 ¢12 ¢13
o=|[0] [#] 0 [¢]=|dar P2 o5 (16)
0" 0" 1 P31 P2 Pas

pu=ap:*+cos(aAT)
P12= aprp>— bps
pis=apips+ bp.
pa=app2+ bpa
$=ap"+cos(aAT)
$os = apaps — bpy
$a1= apspr— bp:
Ds2=apapz+ b
¢sz=aps’+cos(aAT)

) Y Yii Y12 Vi3
r=|[0] vl =172 v Vo3 (17)
OT V31 Y32 V33

yai=cp’+sin(aAT) Ja
Yie= Ch1p2— aps
Y13 = Cpspr + apq
yo1= PPt aps
yo=cp’+sin(eAT) Ja
Vo3 = Ch2p3— ap
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V1= CD3pr— aps
Va2 = Ch2pst apr
y=cpi’+sin(aAT) Ja

where
000 0
[0]=000 0=0
000 0

&= P+ P+ it
a=(1—cos(aAT)) |
b=sin(aAT) e
c=AT/a*—sin(aAT) |’
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