FUJITA CONJECTURE AND NUMERICAL EQUIVALENCE

KATSUMI MATSUDA AND KAZUHISA MAEHARA*

ABSTRACT. In this article the authors show the proofs of conjectures formulated by Fu-
jita ([6)) and propose to adopt numerical equivalence classes of divisors in place of linear
equivalence classes when classifying algebraic varieties, since Enault-Viehweg type vanishing
theorems([11]) hold up to numerical equivalence. Zariski decomposition are treated in numer-
ical equivalence. One of the main concerns in birational geometry is whether the amplitude
of the variation of fibres should be bounded above by the difference between the relative Ko-
daira dimensions of the whole and the generic fibre([10], [1]). This theme can be transferred
to new relative Kodaira dimensions defined by numerical equivalence classes([9]).

1. INTRODUCTION

Let X be a projective non singular variety of dimension d over the complex number field C,
K a canonical divisor and D an ample divisor on X, respectively. By Mori theory([1], [10]),
K +mD is nef if m > d. If K + mD is nef for a positive number m, n(K + mD) is spanned
(i.e., very abundant) for a sufficiently large number n by the base point free theorem. We
would estimate this number n. Fujita([4], [5], [8], [14]) has researched adjoint line bundles
and many examples to pose the following conjectures([6]):

Conjecture 1 (Fujita conjecture A). K + mD is very abundant if
(1) m > d,
(2) m = d and the self-intersection number I(D) = D¢ > 1.
Conjecture 2 (Fujita conjecture B). K + mD is very ample if
(1) m>d+1
(2) m = d + 1 and the self-intersection number I(D) = D? > 1.

The authors will give proofs of conjectures above in Section 2. Fujita proved these con-
jectures when d < 3, using Reider’s theory and results of Ein-Lazarsfeld’s. These bounds
are best possible, since there exists a Del Pezzo manifold (X, D) with I(D) = 1 such that
K + d D= D is not spanned and K + (d+ 1) D = 2D is not very ample([7]). We define

an analogue of litaka dimension:

Definition 1.1. «(D) = max{x(D’)| D’ is numerically equivalent to D}
We pose a question for a fibre space f: X — S:

Conjecture 3.

(Kxs) > L(IX’(_\’/S)_) + var(X/5),

where 7 is the separable closure of the generic point of S. If the automorphisms of local
monodromies of R?¢f,C are unipotent, the equality holds.
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2. PRELIMINARIES

Notation 2.1. We denote by Div(X) the divisor group of X.

A divisor D is called to be very abundant(resp. abundant) if D(resp. mD for some m > 0)
is linearly equivalent to the pull-back of a very ample divisor by some morphism. We call
a divisor D is numerically abundant, if D is numerically equivalent to an abundant divisor.
The complete linear system associated to D is said to be free, if it has no base point. In other
word, O(D) is spanned by the global sections.

Lemma 2.1. Let f : X — Y and ¢ : Y — Z be morphisms and £ an invertible sheaf.
Suppose ¢g*g.(L) — L is surjective. Then f*g*g.fuf*(L) — f*(L) is also surjective.
Proof.

9 9.(L) - f°L

is surjective. From id — f, f*(L£), this morphism factors through
g9 fuf7 (L) = f1(L).
O

Proposition 2.2. The following conditions are equivalent

(1) A divisor D is very abundant.
(2) The complete linear system |D| is free.

Proof. If the canonical homomorphism O @ H°(X, O(D)) — O(D) is surjective, O(D) is the
pull-back of a very ample invertible sheaf.
O

Theorem 2.3. The sum of two abundant divisors is abundant.

Proof. The external tensor product of two ample invertible sheaves over two schemes is am-
ple. O

Proposition 2.4. Let £ be an invertible sheaf over a scheme. The following conditions are
equivalent

(1) L£®" is very abundant for some n > 0.

(2) L£®" is very abundant for every n > ng for some ng.

Proof. The statement is valid for very ampleness. Hence one gets the proof. [

Proposition 2.5. Let X be a scheme, £ a very ample invertible sheaf and K a very abundant
invertible sheaf on X. Then £ ® K is also very ample.

Proof. By assumption, there exist morphisms f : X — Y and g : X — Z and very ample
invertible sheaves Oy (1), Oz(1) on Y and Z such that £ and K are the pull-backs of Oy (1)
and Oz(1), respectively. We have an immersion (f,g) : X — Y x Z such that £L ® K =

(£,9)°0v(1) ® Oz(1). O

We give another interpretation of a criterion of very-ampleness in case of complex varieties.

Proposition 2.6. Let X be a projective non singular variety over the complex number field
C. The sum of a very ample divisor H and a very abundant divisor D on X is very ample.
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Proof. Note that if H is very ample, H'(X,O(H)(—z —y)) = H'(X,O(H)), where z,y € X.
Let H be a very ample non singular divisor and D a non singular very abundant divisor. We
proceed by induction of dimension. Since the following sequence is exact;

HY(X,0x(H)(—z —y)) = H'(X,0x(H + D)(—z —y)) » H(D,Op(H + D)(—z — y))

l 1 !
H'(X,0x(H)  —  H'X,0x(H+D))  —  H'(D,0p(H+D))
where D can be through z,y, if necessary, replaced by a suitable one, isomorphisms of both

side terms implies the isomorphism of H*(X,Ox(H+D)(—z—y)) - HY(X,Ox(H+D)). O

Theorem 2.7 ([3], [11], [13]). Let X be a complete non singular variety over C and D €
Div(X) ® R. Assume D is numerically zero and the fractional part of D is supported in
a normal crossing divisor. Let C be a non singular divisor contained in the support of the
fractional part of D.

Then

H*(X,0%([{D}] — C)(C +[D))) — H'(X,9%([{D})(C + (D))
are injective for all a,b. In particular,
H*(X,wx([D])) = H*(X,wx(C + [D1))

are injective. In addition, let E be a divisor on X. Assume [{D}| + E is normal crossing.

Then
H (X, Q%(E + [{D}] — C)(C+ D)) — H"(X,0%(E + [{D})C + (D))
are injective for all a,b. In particular,
HYX,wx(E + [D])) » H'(X,wx(C + E + [D]))
are injective.

Proposition 2.8. Let X be a complete non singular variety and D a divisor on X. The
sheaf of effective divisors numerically equivalent to D is ®o(c)epicr(x)O(D + C). For example
the sum of the complete linear system of the divisors numerically equivalent to D is

Bo(c)epicr(x)H(X,0(D + C)).

3. THEOREMS AND PROOFS

Theorem 3.1 (Fujita Conjecture A). Let X be a complete non singular variety of di-
mension d over C and £ (resp. (Li)i<i<q) an invertible sheaf(resp. invertible sheaves) over

X.
Suppose that

(1) £ is ample(resp. the L; are ample).
(2) the self intersection number I(£) > 1(resp. the intersection number (£q,---,L4) > 1).
Then wx @ L& (resp. wx @ ®1<i<aL;) is abundant. In other words,

Bslwx @ L% =0 for m > dim X

(resp. Bslwx @ @;L;| =0.)
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Lemma 3.2. Assume moreover. Let X be a complete non singular variety over C and let
L = O(H)(resp. L; = O(H)) by a non singular hyperplane section H of X.

Then wx @ LB™ (resp. wx ® ®1<i<ali) 1s generated by the global sections.

In other words,

Bslwx(mH)| =0 for m > dim X
(resp. Bslwx ® &:L;| =0.)

Proof. We proceed by induction. If dim X = 1, wx(H) is abundant since deg H > 1. Assume
dimX > 2. If dim Bsjwx(mH)| > 1 for m > dimX (resp. dim Bsjwx(H) ® ®ix;L;| > 1)
then we have a base point on H. Since H*(X,wx(mH)) —» H°(H,wy((m — 1)H)) — 0
(resp. H°(X,wx ® ®i<icali) = H°(H,wy ® ®iz;L;) — 0) is exact by Kodaira vanishing
H'(X,wx((m —1)H)) = 0 (resp. H(X,® ®iz; £;) = 0) and |wg((m — 1)H))| (resp. wy @
®iz;L;) is free by induction assumption. It is a contradiction. If dim Bs|wx(mH)| = 0 for
m > dimX (resp. dim Bs|wx(H) ® ®;z;L;| > 0) , then take a hyperplane through a base
point. We have a contradiction. [

Proof. (Proof of Theorem(Fujita Conjecture A)) Assume dim X > 1. Assume that the k-th
power of an ample invertible sheaf L(resp. an ample invertible sheaves £;) for ¥ > 2 has a
non singular irreducible hyperplane section H. Take a k-cyclic covering totally ramified along
H, denote it by f : Y — X. We denote f*H by Hy. Note that Hy is divisible by k and write
it by D, which is non singular and irreducible. Let m > d. The natural homomorphism

H°(Y,wy(mD)) — H°(D,wp((m — 1)D))

(resp. HO(Y,wy (D) ® ®iz; f*Li) = H°(D,wp ® Qig;L;) is surjective, since H(Y,wy((m —
1)D)) = O(resp. H'(Y,wy ® ®ix; f*L;) = 0.) By induction assumption, |wp((m — 1)D)|
(resp. |wy (D) ® ®ig;f*Li|) is free.

Note that Ly = Oy (D).

On the other hand, H°(X,wx ® £®™)(resp. H*(X,wx ® ®1<i<d L£i)) is the Galois invariant
part([12]) by Gal(Y/X) of HY(Y,wy ® f*LE™) (resp. H(Y,wy ® wy ®i<ica f*L:)). To each
member M of |wp ®LE™ | (resp. |wp®@®ix;Li]), there corresponds a divisor W of jwx @ L®™|
(resp. Iwy®®1<,<d f*L;|) which is an extension. The restriction of 1 % LoeGal(y/x) W7 € lwx®
LE™| (resp. ; Y oecal(y/x) W7 € lwx ® ®; Li]) to D is M. Thus the natural homomorphism
H(X,wx @ LZ) = H(D,wp @ L&) (resp. H(X,wx ® ®:L;) — H(D,wp @ LE™1))
is surjective. Therefore the complete linear system |wx ® L®™|( resp. Jwx ® ®:L:]) has no
base point on H. Moving H, we conclude that |wy ® £®™] (resp. |wx ® ®:L;|) has no base
point on the whole X. O

Theorem 3.3 (Fujita Conjecture B). Let X be a complete non singular variety of dimen-
sion d over C and £ an ample invertible sheaf(resp. £; ample invertible sheaves) over X. Then
ifm>d+ 1, wy @ LB (resp. wx ® ®1<i<d+1Li) is very ample when the self-intersection
I(L) > 1 (resp. (Liy,- -+, Liy) > 1 for any {71, - ,1a} C {1,---,d +1}).

Lemma 3.4. Assume moreover. Let X be a complete non singular variety over C and H
a very ample non singular divisor on X such £ = O(H) (resp. L£; = O(H)). Then if
m > dim X 4+ 1, the invertible sheaf wx(mH )(resp. wx ® ®1<i<d+1L:) is very ample when
the self-intersection I(H) > 1(resp. (Liy,--+,Li,) > 1 for any {21, ,24} C {1,---,d +1}.)

Proof. Let m > d + 1. The next exact sequence
H(X,wx(mH)) — H*(H,wy((m - 1)H)) = 0
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(resp. HO(X,wx(H) ® ®iz;L:) — H(H,wy ® ®iz;L:)) implies the commutativity of the
following square

X — P(H(X,wx(mH)))

(3.1) 1 [

H —— P(H°(H,wu((m —1)H))).
(resp.
X — P(H(X,wx(H) ® ®ix;Li))

(3.2) [ [

H —— P(H(H,wg(H) ® ®ix;L;)) .
Thus by moving H, we get the proof. 0O
Proof. (Proof of Theorem(Fujita Conjecture B)) Let m > d+1 and I(£) > 1 (resp. (Liy,- -+, L)
> 1.) The divisor wg ® L&8™(resp. we @ ®;L;) is very ample on a curve C if deg D > 1 and

m—1> dim C = 1. We progeed by induction. For some k > 0, we have £L®* = Ox (H)(resp.
L% = Ox(H)), where H is very ample and non singular. Construct a k-cyclic cover

f:Y — X totally ramified at H over X. Hy = f*H is divisible by k and we denote it
by D. Since Ly = Oy (D), one has a surjection
H°(Y,wy (D) @ LE™ ') — H'(D,wp @ LE™1)
(resp. HO(Y,wy(D)® ®ig;Li) — H°(H,wy ® ®iz;Li).) We have thus a commutative square;
Y — P(H(Y,wy(mD)))

I [

D —— P(H(D,wp((m — 1)D))).

(resp.
Y —— P(H(Y,wy (D) ® ®igiLi))

| !

D —— P(HO(D,WD ®®i¢j£i)) .

Since the natural homomorphism H°(X,wx ® L®™) — H°(D,wpQ@LY™ ") (resp. H*(X,wx ®
®:iL;) — H°(D,wp ® LE™1)) is surjective(Proof of Theorem(3.1)(Fujita Conjecture A)), one
has a commutative square;

X —— P(H(X,wx ® LE™))

I [

H —— P(H°(D,wp ® LZ™71)).

(resp.
X —— P(HYX,wx ® ®Ri<i<d+1Li))

| I

H —— P(H%D,wp ® Qix;Li)) .)
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Moving H, we get the proof. O

4. CONE TYPE THEOREM

Theorem 4.1 (Cone type Theorem). Let X be a complete non singular variety over C,
K a canonical divisor on X and H a divisor.

(C) Assume O(K + D) is zero in Pic"(X), if O(K + D) € Pic"(X), where D is a normal
crossing divisor. Suppose

(1) For a number a, H and aH — K are numerically abundant, respectively.
(2) Some multiple b > 0 of H contains a canonical divisor K, i.e., bH — K is effective .

Then H is also abundant.

Proof. An abundant divisor has non zero litaka dimension we denote by x > 0.

(i) When H and aH — K are numerically zero, it is obvious by hypothesis.

Suppose aH — K for a number a is numerically equivalent to an abundant divisor of strictly
positive litaka dimension & > 0. This will be shown later. /H — K for 0 << £ is linearly
equivalent to an abundant divisor. By hypothesis C, H is also abundant. Suppose H is
numerically equivalent to an abundant divisor of strictly positive litaka dimension « > 0.
We proceed by induction on dimension of varieties. If dim(X) = 1, it is easy because H is
ample because the genus of X is non zero or Pic’(P') = 0. Assume dim(X) > 1. Since litaka
dimension of an abundant divisor which is numerically equivalent to 8H — K is greater than
one for infinitely many b > 0 by assumption, there exist a non singular abundant divisor D’
and a number m such that m(bH — K) — D’ is numerically equivalent to zero. We have
also a non singular abundant divisor D such that D + D’ is normal crossing and nH — D is
numerically equivalent to zero for a number n. There exists a non singular abundant divisor
D" such that k(2nH — D) — (D + D") is numerically equivalent to zero for a number &
and D + D'+ D" is normal crossing.

One has the following exact sequence;

0— O+ [bH—-K —€D"+ (2nH — D) — (D + D")]) —
O(K + D+ [bH - K —~ D'+ (2nH — D) — (D + D")]) —
Op(K + D[bH — K — € D'+ (2nH — D) — ¢(D + D")]) — 0

where € = %, € = % The next long exact sequence is derived;

0 — HO(X,0((2n + b)H — D)) — H(X,0((2n + b)H)) — H(D, Op((2n + b)H)) — --- .

By Theorem(2.7), H'(X,O((2n + b)H — D)) — H'(X,O((2n + b)H)) is injective. Thus one
concludes that there exists no base point on the subset D in X of (2n + b)H. The family of
non singular divisor linearly equivalent to D go through every point in X. Hence the complete
linear system of (2n + b)H is free. Therefore H is abundant. [

Remark 4.1. The fundamental inequality &(wx;s(D)) > &(wx,(D,)) + logvar((X — D)/S)
implies the assumption of Theorem(4.1). Its idea is originally due to Tsunoda; If the irreg-
ularity vanishes, there remains noting to prove. If otherwise, there exists the Albanese map
whose image has non negative k. One can proceed by induction on dimension.
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5. ZARISKI DECOMPOSITION

We study an analogue of Zariski decomposition. We denote by N'(X) (resp. N'(X)o,
resp.N'(X)g) Div(X) modulo numerical equivalence(resp. N'(X) ® Q, resp. N'(X)® R).

Definition 5.1. A divisor D is said to have a Zariski decomposition in Div(X) ® Q(resp.
Div(X) ® R, resp. N'(X)q, resp. N'(X)r), if

D=P + N
such that

(1) P is abundant,

(2) P is a divisor which contains a canonical divisor in Pic(X) ® R.
(3) N is an effective divisor,

(4) H°(X,O([nD))) = H%(X, O([nP])) for every number n.

Theorem 5.1. Let X be a complete non singular variety over C and D an effective divisor.
Assume (C) in Theorem(4.1).

Suppose a divisor H € Div(X) has a Zariski decomposition in N*'(X)g;
(1) the sum of all fractional divisors are supported in a normal crossing divisor.
(2) H is a divisor which contains a canonical divisor K in Pic(X) ®@ R.
H=P + N
(3) P is abundant,
(4) N is effective,
(5)

(6) @ is abundant. |
(7) M is effective.
(8) M and N are strictly stable fixed component of H.

Then the divisor D has a Zariski decomposition in Div(X) ® Q.

bH-K=Q+M for a number b.

Proof. (i) Assume P is numerically zero. It reduces to assumption C (see Proof of Theo-
rem(4.1).)

(ii) Assume P has strictly positive litaka dimension.

We can write

(1) H=eD + N for 0 < e << 1.
Here D is non singular.
(2) bH — K = ¢D' + M for 0 < ¢ << 1. Here D' is non singular.
Hence one has
mH—-D=mP+mN —-D
= (me—1)D + mN.

We choose m such that 1 < me < 2. Thus one has the next epimorphism by Theorem(2.7),
H(X,O(K + D+ [mH—D — (me—1)D —mN +bH — K — D' — M])) =
HO(X,0((m + b)H — [mN + M))) — H°(D,Op((m + b)H — [mN + M))).

Since M and N are strictly stable component of H, we see H°(X,O((m+b)H —[mN+M])) =

HO(X,O((m + b)H)) and H°(D,Op((m + b)H — [mN + M])) = H°(D,Op((m + b)H)).
Therefore H has Zariski decomposition in Div(X)® Q. O
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