Non Commutative Geometry 1

Kazuhisa MAEHARA*

Abstract

In this article we shall introduce a non commutative algebraic geometry by Kontsevich and Rosenberg ([Kon], [Mch]) and represent it by recently developed theory of corings and comodules ([Brz]). We restrict ourselves to the category of non commutative algebraic varieties and develop the birational geometry by infinite Galois theory of skew fields making use of profinite groups ([AM], [BJ], [Breen1], [Breen2], [Gir], [SGA], [S1], [S2], [Shatz], [Se], [Zuo], [RBZL]). We apply it to non commutative varieties of general type defined later over the field of characteristic 0 ([Iita], [Fuj], [Kaw], [Mats], [MP], [Km3]). Main tools of classification of projective varieties ([Iita], [Mum], [Vieh], [Ko1], [Zuo]) are so called characteristic $p > 0$ technic ([MP], [Ko2]), [BBD], [Berth]) and weak positivity direct images of multi-power of dualizing sheaves for fibre spaces ([Kaw], [Ws], [Vieh], [Nak], [Km1]) as well as Kawamata-Viehweg vanishing theorems ([MP]). Instead of these tools, we make use of profinite groups.

1 Introduction:

In this section we consider the corings ([Brz]) that have a grouplike element g which are related to ring extensions $B \to A$. Throughout this section C denotes an A-coring. Galois corings are isomorphic to the Sweedler coring associated to a ring extension $B \to A$ induced by the existence of a grouplike element. The following theorem determines when the g-coinvariants functor is an equivalence.

Theorem 2. Let g be a grouplike element of C, $B = A^g_{coC}$, and $G_g : M^C \to M_B \quad M \mapsto M_g^{coC}$ the g-coinvariants functor.

1. The following statements are equivalent:

(i) (C, g) is a Galois coring and A is a flat left B-module.
(ii) AC is flat and A_g is a generator in MC.

2. The following statements are equivalent, too.

(i) (C, g) is a Galois coring and $_BA$ is faithfully flat.

(ii) AC is flat and A_g is a projective generator in MC.

(iii) AC is flat and $\text{Hom}^C(A_g, -) : MC \to MB$ is an equivalence whose inverse is $- \otimes_B A : MB \to MC$.

The theorem above is a restatement of one of the main results in non commutative descent theory([HS], [S1], [S2], [Km2]). In fact, for an algebra extension $B \to A$, there exists a comparison functor $- \otimes_B A : MB \to \text{Desc}(A/B)$ which to each right B-module M gives a descent datum $(M \otimes_B A, f)$ with $f : M \otimes_B A \to M \otimes_B A \otimes_B A, m \otimes a \mapsto m \otimes 1_A \otimes a$.

If (C, g) is a Galois coring, then the category of right C-comodules is isomorphic to the category of descent data $\text{Desc}(A/B)$. Thus if $B \to A$ is faithfully flat, then it is an effective descent morphism. Furthermore, Galois corings correspond to comparison functors that are equivalences. Note that if $B \to A$ is a faithful flat extension, then $(A \otimes_B A, 1_A \otimes_B 1_A)$ is a Galois coring. The objects in the category of corings are pairs $(C : A)$, where A is an R-algebra and C is an A-coring. A morphism between corings $(C : A)$ and $(D : B)$ is a pair of mappings $(\gamma : \alpha) : (C : A) \to (D : B)$ satisfying

1. $\alpha : A \to B$ is an algebra map. Hence D is considered to be an (A, A)-bimodule.

2. $\gamma : C \to D$ is a map of (A, A)-bimodules such that

$$\xi \circ (\gamma \otimes_A \gamma) \circ \Delta_C = \Delta_C \circ \gamma ; \xi_D \circ \gamma = \alpha \circ \xi_C,$$

where $\xi : D \otimes_A D \to D \otimes_B D$ is the canonical map of (A, A)-bimodules.

Since an algebra A can be considered as a trivial A-coring $(A : A)$, this category of corings contains the category of R-algebras.

Left C-comodule is defined as a left A-module M, with a coassociative and counital left C-coaction. C-morphisms between left C-comodules M, N are defined in an obvious way. Left C-comodules and their morphisms form a pre-additive category $^C M$.

3 Geometric View

Let k be a commutative field and A, B k-algebras. The objects of the opposite category of corings denote Spec $(C : A)$ and a morphism between Spec $(D : B) \to$ Spec $(C : A)$ denotes Spec $(\gamma : \alpha)$. This category is said to be that of covers. Furthermore, the
category $\mathcal{C} M$ is abelian and it is denoted $QCoh(\text{Spec}(C : A))$. The canonical morphism $f : \text{Spec}(B \otimes_A B : B) \to \text{Spec}(A : A)$ defines an equivalence between abelian categories $f^* : QCoh(\text{Spec}(A : A)) \cong QCoh(\text{Spec}(B \otimes_A B : B))$. Owing to Morita-Takeuchi theorems or Grothendieck ideas, the geometry of covers consist in $QCoh(\text{Spec}(C : A))$.

The cover $\text{Spec}(C : A)$ equipped with an epimorphism $A \otimes A \to C$ which is a morphism of coalgebras is said to be a space cover. A morphism in the category of space covers is defined to be a morphism as covers compatible with additional structure as space covers. Let $f = (\gamma, \alpha), g = (\delta, \beta)$ be two morphisms between space covers $\text{Spec}(C : A) \to \text{Spec}(D : B)$. When for $x_i \otimes y_i \in \ker(A \otimes A \to C)$, the following equation holds $\sum_i \alpha(x_i) \cdot \beta(y_i) = \beta(x_i) \cdot \alpha(y_i) = 0$ in B, two morphisms f and g are defined to be equivalent.

Definition 4. The category of non commutative algebraic spaces over k is the localization category with the canonical morphisms invertible of the quotient of the category of space covers by equivalence of equivalent morphisms.

The category of separated quasi-compact schemes over $k([\text{Gir}], [\text{SGA}], [\text{GG}], [\text{HS}], [\text{Kato}], [\text{KKMS}])$ and the opposite category of that of k-algebras are equivalent to a full subcategory of the category of non commutative algebraic spaces over $k([\text{Kon}], [\text{Cohn}])$, respectively. The category of non commutative algebraic spaces over k admits finite limits. A non commutative algebraic space of the type $\text{Spec}(A : A)$, where A is a k-algebra, is said to be an affine space. Let \mathbb{NP}^d_k be the non commutative projective space over k and A a k-algebra. The set $\text{Hom}(\text{Spec}(A : A), \mathbb{NP}^d_k)$ is the set of quotient modules of A^d which are locally free A-modules of dimension 1 in flat topology([SGA]). In the same way, we have the non commutative Grassmannian $NGr_k(r, d)([\text{Kon}], [\text{Laum}])$.

5 Extension of skew fields and Galois theory

Let A be an integral domain such that $xA \cap yA \neq 0$ for $x, y \in A$, which is called a right Ore domain. Let $S = R^\times$. Then the localization of A at S is a skew field $K = A_S$ and the natural homomorphism $\lambda : A \to K$ is a monomorphism. Recall that every ring with a homomorphism to a field has invariant basis number. From now on, we treat a non commutative algebraic space of the type $\text{Spec}(C : A)$ where A is a Ore domain. Any equation of degree $n > 0$, $x^n + a_1x^{n-1} + \cdots + a_n = 0$ ($a_i \in K$), has a right root in some extension of K. There exists the right algebraic closure \overline{K} over K such that any equation of the type above has a right root in \overline{K}. A Galois extension L/K is outer if and only if the centralizer of K in L is just the centralizer of L. Let k be a commutative field of characteristic 0 and K a k-algebra of finite type, skew field. Let \overline{K} be the right algebraic
closure of K such that the centralizer of K in \overline{K} is just the centralizer of \overline{K} ([Cohn]). Let $(K_i)_{i \in I}$ be a family of skew fields such that

1. K_i are subfields of K,
2. K_i are k-algebras of finite type,
3. the centralizers of K_i in \overline{K} are the center of \overline{K}.

Then the \overline{K}/K_i are all outer Galois extensions, whose Galois groups are profinite groups. We need Jacobson-Bourbaki correspondence ([Cohn], [BJ]): Let K be a field and $End(K)$ the endomorphism ring of the additive group K^+ with the finite topology. We have an order-reversing bijection between the subfields D of K and the closed K-subrings of the type $End_{D-}(K)$ of $End(K)$. From this, we have the following Galois connection: Let L/K be an algebraic Galois extension with Galois group G outer. Then we have a bijection between intermediate fields D, i.e., $K \subset D \subset L$ and the closed subgroups H.

6 Non commutative algebraic birational geometry

We investigate the non commutative algebraic birational geometry from the point of view of the profinite Galois groups ([Gir], [Breen1], [Breen2]). Let $X \to S$ be a non commutative fibre space of algebraic spaces over Spec (k), with the generic point of the generic general fibre one of skew fields K_i which are defined in the preceding section ([Mch], [RBZL]). Let $1 \to G \to E \to P \to 1$ be an extension of a profinite group P by a profinite group G associated to the non commutative fibre space $X \to S$. Hence G is a profinite group, that is one of the Galois group $Gal(\overline{K}/K_i)$. To an exact sequence $1 \to \text{Inn}G \to \text{Aut}G \to \text{Out}G \to 1$, we have an exact sequence

$$H^1(P, \text{Inn}G) \to H^1(P, \text{Aut}G) \to H^1(P, \text{Out}G),$$

i.e.,

$$\text{Hom}(P, \text{Inn}G) \to \text{Hom}(P, \text{Aut}G) \to \text{Hom}(P, \text{Out}G).$$

Here OutG denotes the outer automorphism group of G. A group extension is an element of $H^1(P, G \to \text{Aut}G)$, where $G \to \text{Aut}G$ is a crossed module. We have

$$1 \to H^2(P, Z(G)) \to H^1(P, G \to \text{Aut}G) \to H^1(P, \text{Out}G).$$

Here $Z(G)$ denotes the center of G. Assume that Out(G) is an algebraic group of countable connected components. Then the canonical representation $\rho : P \to \text{Out}G$ turns out to be trivial after replacing a profinite group associated to a finite morphism $S' \to S$ in the
following lemma. Furthermore assume that the extension is neutral. This assumption is satisfied since there exists a homomorphism from $1 \to G' \to G' \times P \to P \to 1$ to $1 \to G \to E \to P \to 1$, where $P \to P$ is an identity, $G' = \text{Gal}(\overline{K}/K)$.

Since we have $H^2(P, Z(G)) \to H^1(P, G \to \text{Aut}(G))$, the extension $1 \to G \to E \to P \to 1$ is given by pushing out an extension $1 \to Z(G) \to E' \to P \to 1$. Hence E' is a semi-direct product $Z(G) \rtimes P$, which is contained in a semi-direct product $G \rtimes P$. Thus this central extension is trivial. Therefore by pushing out this central extension, the extension $1 \to G \to E \to P \to 1$ is trivial.

Lemma 7. There exists a homomorphism $P' \to P$ with $(P' : P) < \infty$ such that the representation $\rho : P' \to \text{Out}(G)$ is trivial. Here P' denotes the absolute Galois group $\text{Gal}(\overline{R(S')}/R(S'))$.

Proof. Let A denote $\text{Out}(G)$. This group A is locally algebraic([SGA]). The natural representation $\rho : P \to A$ induces $\overline{\rho} : P \to A/A^0$, where A^0 denotes the neutral component of A. There is no countable profinite group. Since A/A^0 is a countable set, $\overline{\rho}(P)$ is a finite group. Replace by P the kernel of $\overline{\rho}$. We have $\rho : P \to A^0$. Hence we have an isomorphism

$$H^1(R(S)/R(S), A^0(R(S)) \cong H^1(BP, A^0).$$

Let P be an A^0-torsor associated to $\rho : P \to A^0$. A^0 is algebraic (quasi-compact, faithfully flat and of finite type) over $\text{Spec}(R(S))$. Thus there exists a generically finite $S' \to S$ such that an A^0-torsor P is trivial over $\text{Spec}(R(S'))$. Hence the representation $\rho : P' \to \text{Out}(G)$ is trivial. \hfill \Box

Thus we obtain the following result in our proof.

Theorem 8. Let $1 \to G \to E \to P \to 1$ be an extension of a profinite group P by a profinite group G. Assume

(a) $\text{Out}(G)$, is an algebraic group with countable connected components.

(b) $E \to P$ has a section which is a group homomorphism, i.e., a neutral extension.

Then there exists a profinite group P' such that the pull-back of the extension $1 \to G \times_P P' \to E \times_P P' \to P' \to 1$ is a direct product.

Let X be a non commutative fibre space of smooth varieties over $\text{Spec} \ k$. We have the canonical homomorphism $\Gamma(X, \Omega_{X}^{\otimes m}) \otimes \mathcal{O}_X \to \Omega_{X}^{\otimes m}$. Assume this homomorphism is generically epimorphism. Then it determines a map from an open of X to non commutative Grassmannian[Kon]). When this map is birational, i.e., the field defined by the generic point of X and that of the image are isomorphic, the assumption (a) above is satisfied.
Remark 9. Let $\phi : G_1 \to G_2$ be an open continuous homomorphism of profinite groups. $\phi(G_1) \subset G_2$. Let $Z(G_2)C_{\phi(G_1)}(\phi(G_1))$ denote C. Then for a homomorphism between extensions of P by G_1 and G_2 respectively, one has homomorphisms $H^2(P, Z(G_1)) \to H^2(P, Z(G_2))$. There exists an open subgroup P' of finite index of P such that $H^2(P', Z(G_2)) \to H^2(P', C)$ is injective.

References

[Cohn] Cohn, P.M., Skew Fields, Theory of general division rings, Encyclopedia of mathematics and applications 57.

