東京工芸大学工学部生命環境化学科卒業生(2018年度) 東京工芸大学工学部生命環境化学科卒業生(2017年度) 東京工芸大学芸術学部映像学科准教授 東京工芸大学工学部生命環境化学科教授

2019年3月22日受理

トリアセチルセルロースベース映像フィルムのNMRを用いた劣化診断

西谷 拓哉*1 城所 学*2 矢島 仁*3 高橋 圭子*4

Quantitative deterioration diagnosis of the motion-picture film by NMR spectroscopy

Taikuya Nishitani*1 Gaku Kidokoro*2 Hitoshi Yajima*3 Keiko Takahashi*4

Vinegar syndrome is a term used to describe the chemical phenomenon that occurs during the deterioration of cellulose acetate (CA) base motion-picture film, the symptoms of which are a vinegar odor, film shrinkage, embrittlement, buckling of the gelatin emulsion, and the formation of a white precipitate on the film surface. Cellulose triacetate (TAC), which contains no free hydroxyl groups (DS = 3.0) is a typical CA derivative and is used as the base material for photographic films, motion-picture films, and microfilms since the 1920s as a replacement for the unstable and highly flammable cellulose nitrate base film. Although standard storage conditions for TAC base films have been established over recent decades, chemical analysis of the degradation products have not been clarified, and no specific diagnostic technique has been developed. We focused on the complete chemical analysis of the films. We attempted to identify the additives and the structure of films based on results from nuclear magnetic resonance (NMR) spectroscopy. The average of degree of substitution (DS) can be decided using only 3 mg of film using NMR method under high temperature in dimethyl sulfoxide solution.

Table 1. フィルムベースの特性

<table>
<thead>
<tr>
<th>フィルムベース</th>
<th>ニトロセルロース (NC)</th>
<th>アセチルセルロース (AC)</th>
<th>ポリエチレントレート (PET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造式</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>長所</td>
<td>高耐久性</td>
<td>易編集性</td>
<td>高耐久性</td>
</tr>
<tr>
<td>短所</td>
<td>可燃性</td>
<td>ビニガーシンドローム</td>
<td>抗火性</td>
</tr>
</tbody>
</table>

Fig. 1. 映像フィルム Fig. 2. 酢酸セルロース

1. 緒言

1.1. 文化学財素材としてのプラスチック

媒介・無形を問わず人類の文化的活動によって生み出された膨大な文化遺産は国際連合教育科学文化機関（ユネスコ）の尽力のもと各国で文化財として保存・保護されてきている。我が国では文部科学省及びその外局である文化庁が様々な法律・制度を施行している。しかし制度だけで文化財は保存できない。有形遺産は物質＝分子からなる複合材料で構成されており、複合材料の構造が不明では真の劣化防止、修復、適切な保存条件を確立することは困難である。有形文化遺産は木材、岩石、土、さらに金属、セラミックなど天然由来の材料で構成されていた。ゆえに材料同定は比較の容易であった。20世紀、化学の進展と共に人工高分子であるプラスチックが加わった。材質劣化により形状変化の生じた作品もあり、劣化防止、復元が急務となっている。天然由来材料以上に、保存と復元には化学的分析が必須である。材質の特定、分布も含めた重合度と混合物情報も必要であり、さらに素材特有の化学変化の可能性も考慮しなくてはならない。物理的破損に起因する劣化とは区別が必要である。

1.2. 映像フィルムの歴史

映像、映写などの映像フィルムはマイクロサイズの複合多層材料であり、保護層、感光乳剤層、ハレーション防止層、支持層（ベース）、帯電防止層など、5層からなる。支持層は最も幅が広くフィルムの物理的安定性、保存性能の鍵となる（Fig.1）。映像フィルムのルーツである写真感光材料は支持層の改質により発達をとげた。最初に金属板が用いられたが、紙、ガラス板を経て1890年以降、
1.3 劣化現象、ビネガーシンドローム

前述したとおり、ビネガーシンドロームは高温高湿度下、数十年単位で生じる経年劣化現象である。アセテルエステル分解で生じた酢酸臭を伴い、20から40％含まれている可塑剤との相溶性が変化するため、ベース層のみが収縮し、フィルムの他層との間のサイズの差異が生じる結果フィルムの変形を引き起こす。また、可塑剤のフィルムからの分離（白色固体析出）なども生じ、最終的には画像が消失してしまう。「早期発見＝目に見えない不変化」、化学的変化（エステル分解である。化学的変化が物理的変化を誘導し、最終的には画像消失に至る。」「早期発見＝目に見えない不変化」、化学的変化（エステル分解である。化学的変化が物理的変化を誘導し、最終的には画像消失に至る。）

2. 実験

2.1 試料

試薬；セルロースアセテートはACROS ORGANIC製（AC1、Mw:100,000、酢化度39.8％、DS=1.4）と関東化学（株）製（AC2、酢化度55％、DS=2.4）の2種類を、トリアセチルセルロース（TAC、酢化度61.3～61.9％、DS>2.9）は和光純薬工業（株）製を、トリフェニルホスフェイト（TPP）は関東化学（株）製特級グレードのものを用いた。
CHCl₃は関東化学(株)製特級グレードのものを用いた。重溶媒であるジメチルアセトアミド(DMSO-d₆ 99.9%)および重水(D₂O, 99.9% D)は関東化学(株)製を用いた。映像フィルム: 映像フィルム A, B, C は東京工芸大学厚木キャンパスライブラリ保有フィルムの中から抽出した。本ライブラリは本大学同様、小西・六右衛門創業の小西屋六兵衛店に端を発している。1930 年代から一般公開されたカラー映画フィルムはテクニカラーシステムが世界的主流であったが、小西写真工業株式会社(現コニカミノルタ株式会社)は 1942 年独自のテクニカラーシステムを開発した。時局柄世界に広まることがなかったが、日本映画業とともにシステムの完成に尽力した。開発に関与した「化生研」は、戦前に作成されたフィルムも含み、多くの映画フィルムを所蔵していた。1958 年、これらのフィルムはコニカ(株)日野工場に預けられ、フィルムライブラリに正式に登録された(2)。さらに、1988 年コニカ日野工場危険物倉庫取り壊しに伴い、トラック 1 台分、数百巻が選別運搬された。35 mm, 16 mm フィルムをクリーニング後、銘柄、フィルム種類、検証など明確に記録整理された。1990 年 3 月に選別されたフィルムは、東京国立近代美術館フィルムセンターに寄贈され、残りが 1990 年 6 月東京工芸大学に運搬され、東京工芸大学ライブラリとなった。運搬時、酢酸臭はなく、保存処理を施し、劣化の著しいフィルムは処分したので、その時点では劣化しないことを実験室に室温で特別の設備なしに観察した。24 年が経過している。映像フィルム D は 2006 年に富士フィルム株式会社より新規購入したTAC ポリマーであり、他のフィルム同様、保存されている(Fig. 4)。

Fig. 4. 映像フィルム(右から、A, B, C, D)

2. 可溶媒探査

2.1. 試料

NMR は日本電子(株)製 JMN-ECZ-500R を用いた。約 10 mg の試薬 AC1, TAC をそれぞれ 0.75 ml の DMSO-d₆ に溶解し、直径 5 mm の NMR 試料管にて測定した。フィルム A, B, C, D はあらかじめ細裁断し、3 mg を 0.75 ml の DMSO-d₆ とともにサンプル瓶中、50 分超音波処理後、溶液のみをパスツールピペットで NMR 試料管に移した。温度以上は一定の測定条件を採用した。具体的には以下のとおりである。測定モード: proton, 32 回積算、室温は 20-24℃、高温は機器の測定温度制御操作に従い制御した。H-D 交換の目的で加えた重水は 30 μl である。

真空乾燥機は紫田(株)製 GLASS TUBE OVEN GTO-200 を、超音波振盪は日本エマソン(株)製 BRANSONIC M3800-J を用いた。

3. 結果と考察

3.1. アセチル基とグルコース基のプロトン比とアセチル置換度検量線の作成

Fig. 5. 溶解度試験の装置

Fig. 6. アセチル基、グルコース基 H 数比と DS(n=100)

Fig. 7. アセチル基、グルコース基 H 数比と DS(n=10)
トリアセチルセルロースベース映像フィルムのNMRを用いた劣化診断

未劣化フィルムのベース本体はセルロースのグルコース基数 2, 3, 6 位水酸基が完全にアセチル化されているのでグルコースユニットあたりグルコース由来プロトン (G) は 7 個である。アセチル基由来プロトン (AcH) は 9 個である。脱アセチル化により水酸基(OH)となるので G は増加する。先行研究ではトリアセチルセルロース可溶媒に試料を溶解後、重水添加 H-D 交換により、G H を常に 7 としてアセチル基との積分比を求めていた。9 以上の AcH 値が算出され、明らかに定量性に問題があった。そこで新たにプロトン比の理論値と平均置換度 (DS) の相関を求め検証曲線を作成した。実際のセルロースは重合度 1500 以上であるが、グルコースユニット 100 分子(重合度 100)と 10 分子(重合度 10)をモデル系としてプロトン数を算出し AcH /G と平均置換度の相関を求めた(Table 2, Fig. 6, Fig. 7)。

Table 2.

<table>
<thead>
<tr>
<th>AcH</th>
<th>G</th>
<th>AcH</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>702</td>
<td>1.282</td>
<td>3.00</td>
</tr>
<tr>
<td>897</td>
<td>703</td>
<td>1.276</td>
<td>2.99</td>
</tr>
<tr>
<td>894</td>
<td>704</td>
<td>1.270</td>
<td>2.98</td>
</tr>
<tr>
<td>891</td>
<td>705</td>
<td>1.264</td>
<td>2.97</td>
</tr>
<tr>
<td>888</td>
<td>706</td>
<td>1.258</td>
<td>2.96</td>
</tr>
<tr>
<td>885</td>
<td>707</td>
<td>1.252</td>
<td>2.95</td>
</tr>
<tr>
<td>882</td>
<td>708</td>
<td>1.246</td>
<td>2.94</td>
</tr>
<tr>
<td>879</td>
<td>709</td>
<td>1.240</td>
<td>2.93</td>
</tr>
<tr>
<td>876</td>
<td>710</td>
<td>1.234</td>
<td>2.92</td>
</tr>
<tr>
<td>873</td>
<td>711</td>
<td>1.228</td>
<td>2.91</td>
</tr>
<tr>
<td>870</td>
<td>712</td>
<td>1.222</td>
<td>2.90</td>
</tr>
<tr>
<td>867</td>
<td>713</td>
<td>1.216</td>
<td>2.89</td>
</tr>
<tr>
<td>864</td>
<td>714</td>
<td>1.210</td>
<td>2.88</td>
</tr>
<tr>
<td>861</td>
<td>715</td>
<td>1.204</td>
<td>2.87</td>
</tr>
<tr>
<td>858</td>
<td>716</td>
<td>1.198</td>
<td>2.86</td>
</tr>
<tr>
<td>855</td>
<td>717</td>
<td>1.192</td>
<td>2.85</td>
</tr>
<tr>
<td>852</td>
<td>718</td>
<td>1.187</td>
<td>2.84</td>
</tr>
<tr>
<td>849</td>
<td>719</td>
<td>1.181</td>
<td>2.83</td>
</tr>
<tr>
<td>846</td>
<td>720</td>
<td>1.175</td>
<td>2.82</td>
</tr>
<tr>
<td>843</td>
<td>721</td>
<td>1.169</td>
<td>2.81</td>
</tr>
<tr>
<td>840</td>
<td>722</td>
<td>1.163</td>
<td>2.80</td>
</tr>
<tr>
<td>837</td>
<td>723</td>
<td>1.158</td>
<td>2.79</td>
</tr>
<tr>
<td>834</td>
<td>724</td>
<td>1.152</td>
<td>2.78</td>
</tr>
<tr>
<td>831</td>
<td>725</td>
<td>1.146</td>
<td>2.77</td>
</tr>
<tr>
<td>828</td>
<td>726</td>
<td>1.140</td>
<td>2.76</td>
</tr>
<tr>
<td>825</td>
<td>727</td>
<td>1.135</td>
<td>2.75</td>
</tr>
<tr>
<td>822</td>
<td>728</td>
<td>1.129</td>
<td>2.74</td>
</tr>
<tr>
<td>819</td>
<td>729</td>
<td>1.123</td>
<td>2.73</td>
</tr>
<tr>
<td>816</td>
<td>730</td>
<td>1.118</td>
<td>2.72</td>
</tr>
<tr>
<td>813</td>
<td>731</td>
<td>1.112</td>
<td>2.71</td>
</tr>
<tr>
<td>810</td>
<td>732</td>
<td>1.107</td>
<td>2.70</td>
</tr>
<tr>
<td>807</td>
<td>733</td>
<td>1.101</td>
<td>2.69</td>
</tr>
<tr>
<td>804</td>
<td>734</td>
<td>1.095</td>
<td>2.68</td>
</tr>
<tr>
<td>801</td>
<td>735</td>
<td>1.090</td>
<td>2.67</td>
</tr>
</tbody>
</table>

アセチル基由来プロトン数とグルコース基由来のプロトン数、および平均置換度

以上で、グルコースユニット 100 分子(重合度 100)と 10 分子(重合度 10)をモデル系としてプロトン数を算出し AcH /G と平均置換度の相関を求めた(Table 2, Fig. 6, Fig. 7)。重合度 10 と 10 の理論関係曲線に著しい差異はない、重合度 100 理論曲線でもアセチル置換度決定検量線として十分と判断した。この理論曲線を用いるとトリアセチルセルロース由来積分値とアセチル基由来積分値で DS が算出できる。ランダムな脱アセチル化が生じ、試料のシグナルが複雑であるが、DS が算出可能であることが示された。
3.2. フィルム可溶媒の探査
当研究室では、これまで単一溶媒のみを対象にアセチル基置換度非依存性可溶媒探査を行ってきた。ジメチルホルムアミド(DMF)、ジメチルホルミド(DMSO)が可溶媒であることを報告しているが、シグナルがブロードであり、定量分析に適用することは問題があった。そこで、映画フィルム編集においてフィルムの切断の接着に用いられるフィルムセメントの成分を参考にし、複数の溶媒を混ぜて最適可溶媒の探査を試みた。NMR 測定溶媒探査であるので、重溶液として入手可能であることも条件とした。1,4-ジーオキサン、アセトン、ジクロロホルムに着目し、さまざまな混合割合で溶解度試験を行った。なお、未劣化フィルムモデル物質として TAC を、劣化フィルムモデルとして A1, A2 を、さらに TAC ベースは 40% 程度の可塑剤を含んでいるので可塑剤として多く用いられているトリフェニルホスホフィン(TFP)を用いて試験した。

3.3. NMR スペクトル
実映像フィルムの検討前予備実験として、未劣化フィルムベースモデル試料 TAC、劣化フィルムベースモデル物質 A1 の 1H-NMR 条件探査を行った。

3.3.1 試験トリオーサルセルロース (TAC) の 1H-NMR
3.3.2 試薬アセチルセルロースの 1H-NMR

AC1 はラジンダムに脱アセチル化されているので置換位置の差異も考慮すると 8 種のグルコース基が存在するので最大 7×8=56 シグナルが存在することになる。すべてのプロトンを帰属することは不可能である。TAC に比べるとよりブロードなスペクトルが観測された（Fig. 9）。室温において 5.6 ppm 付近に観測されるシグナルは D₂O を添加すると消失した。グルコース 2OH, 3OH のシグナルと推測され、脱アセチル基した水酸基の存在を示唆している（Fig. 10）。温度上昇に伴うシグナルはシャープになった。室温では 3.4 ppm 付近に観測された水由来のシグナルが 130 ℃では 2.9 ppm 付近に高磁場にシフトした。さらに 2OH, 3OH シグナルと推測されたシグナルは温度上昇と共に高磁場シフトし、両シグナルが水酸基シグナルと同じ磁場にシフトした。温度上昇によってシグナルの温度依存性を観測することができる（Fig. 11, 12, 13）。TAC, AC1 いずれも温度上昇に伴いシグナルはシャープになった。

3.3.3 映像フィルムの NMR 解析

工芸大ライブラリ所有のフィルム A, B, C, D を DMSO- d₆ に溶解させると、A は一部溶け残り、B は溶解、C は一部溶け残り、D は細かく溶け残った。
積分値のシグナルと水シグナルの分離が実現し、3.1 ppm付近に観測された水由来のシグナルが ppmた。2.2 ~ 1.7 ppm。は細かく溶け残った溶け残り3.3.2。理が不完全でも120以上で測定すれば定量できることが判明した。5.2 ~ 5.7 ppm、3.4 ~ 5.2 ppm非水酸基由来3.3.5。由来するブロードシグナルが属して矛盾ない、室温では3.4 ppmにグルコース基由来のシグナルが観測された ~ 5.6 ppm、60基由来シグナルも高磁場シフトし、されることが判明した。乾燥処理をより厳密に行うとアセチルセルロースとよりブロードなスペクトルが観測されたのプロトンを帰属することは不可能である。グルコース基由来のシグナルがにおいてグルコース由来シグナル範囲まで高磁場シフトが観測されたがグルコース基由来シグナル範囲を適用し、Fig. 9, 10。A, B, C, D，TAC, AC1はランダムに脱アセチル化されているので置換位AC1は一部溶け残りに溶解させるとから2.8 ppmでは。さらにフィルムを脱アセチルして出現した水酸を構成する中グルコース基に溶。Fig. 10。映る結果より、TAC, AC1の温度上昇に伴う高磁場シフトが観測されたがグルコース基由来シグナル範囲までシグナルシフトは観測されなかった。温度上昇に伴い全てのシグナルはシャープになった。

4. 結論

アセチル-βグルコース重合度10、および100のアセチルセルロースをモデル物質として、逐次アセチル置換基数に対応するグルコース基由来、アセチル基由来プロトンの理論個数を算出し。平均置換度DSとの相関をグラフ化して検量線を作成した。重合度100のセルロースモデル物質の相関曲線でも置換度検量線として用いることが出来る事が判明した。

非フィルム試料TAC, AC1のNMRスペクトル測定結果および溶媒試験により被験フィルム3mgをDMSO-d6に溶解させ、60℃で、グルコース基由来シグナル範囲(5.6 ~ 2.8 ppm)とアセチル基由来シグナル範囲(2.2 ~ 1.7 ppm)の積分比を検量線にてDSを算出すると平均アセチル化度が算出でき、劣化早期診断が出来る事が判明した。

当研究では前処理をするに至らなかったので正確な置換度を提示できなかったが、予備乾燥(室温、真空5日以上)に有効と考えられる。3mgのフィルムは映像フィルムのハーフフォーレーション(送り穴)1つでも十分であり、非破壊法ではないが映像作品には差し支えない。さらにフィルム可塑剤も同時に定量性可能である。
測定中の脱アセチル化反応で劣化が進行する可能性はあるが、酢酸シグナルは11.9(OH 1H s)および1.9(CH₃ 3H s) ppm に観測されるので、あらかじめ室温条件で測定し、高温測定後再度室温条件で測定すると測定中劣化も定量できる。

以上NMRによりピネガーシンドロームの定量的診断法を確立した。

謝辞

本研究はJSPS科研費JP17K01199の助成を受けたものです。

参考文献

1) 馬淵久夫, 杉下龍一郎, 三輪嘉六, 沢田正昭, 三浦定俊編「文化財科学の事典」(2018)。
2) 保積英次「セルロースフィルムベース物語」カメラレヴューカラッシャックカメラ専科No21 116-119 (1992)。
4) 「セルロースアセテートベースフィルムの劣化問題」文書管理通信 1994, No 5・6 号。
5) 安江明夫「ビネガーシンドローム問題再考」マイクロフィルム保存のために, 現代の図書館 vol.44, (4), (2006)。
8) 「マイクロフィルム保存のための基礎知識」国立国会図書館 収集部資料保存課 2005年3月。
9) K. Takahashi, H. Hayakawa, T. Okamoto, S. Fujiwara, and H. Yajima, The Academic Reports of the Faculty of Engineering, Tokyo Polytechnic University, 36, 87 (2013)。
12) コニカ資料整理委員会、代表柴田俊夫「コニカカラーカメラ・コニカカラーシステム」1, コニカカラーカメラ・コニカカラーシステムの概要。
14) US patent 2607704(1952) Eastman Kodak。