Dynamics of maps on \mathbb{R}^{2} associated with unicritical polynomials

Shizuo Nakane＊

The dynamics of maps on \mathbb{R}^{2} associated with unicritical polynomials is considered． Structure of the interior of the filled Julia set is investigated．

1 Quadratic maps

In this section，we consider a quadratic map on \mathbb{R}^{2} of the form ：

$$
f_{c}(x, y)=\left(x^{2}+y^{2}+c, 2 x y\right), \quad c<1 / 4 .
$$

It appears in the dynamics of quadratic maps on coquaternions．If we put $\phi(x, y)=(x+y, x-y)$ and $g_{c}(x, y)=\left(p_{c}(x), p_{c}(y)\right)$ ，where $p_{c}(x)=x^{2}+c$ is a unicritical quadratic polynomial，then it follows

$$
\phi \circ f_{c}=g_{c} \circ \phi
$$

Thus the affine map ϕ conjugates the map f_{c} to a simpler map g_{c} and the dynamics of f_{c} is translated from that of g_{c} ．For example，since $K\left(g_{c}\right)=$ $K\left(p_{c}\right) \times K\left(p_{c}\right)=[-\beta, \beta] \times[-\beta, \beta]$ ，we have

$$
K\left(f_{c}\right)=\left\{(x, y) \in \mathbb{R}^{2} ;|x+y|,|x-y| \leq \beta\right\}
$$

Let $\alpha=\frac{1-\sqrt{1-4 c}}{2}$ and $\beta=\frac{1+\sqrt{1-4 c}}{2}$ be the fixed points of p_{c} ．Then β is always repelling．If $-3 / 4<c<1 / 4, \alpha$ is the attracting fixed point of p_{c}

[^0]Received Sept．22， 2017
and $\operatorname{int} K\left(p_{c}\right)=(-\beta, \beta)$ is the basin of α. That is, it is the set of points whose orbits converge to α.

In case $-5 / 4<c<-3 / 4, p_{c}$ has an attracting 2 -cycle $\gamma_{ \pm}=\frac{-1 \pm \sqrt{-4 c-3}}{2}$, whose basin \mathcal{B} is $(-\beta, \beta) \backslash \cup_{n \geq 0} p_{c}^{-n}(\alpha)$. This basin consists of infinitely many connected components. Let $U_{ \pm}$be the connected component containing $\gamma_{ \pm}$ respectively. Then \mathcal{B} is the union of $\mathcal{B}_{ \pm}=\cup_{n \geq 0} p_{c}^{-2 n}\left(U_{ \pm}\right)$. Then g_{c} has two attracting 2-cycles $\left\{\left(\gamma_{ \pm}, \gamma_{ \pm}\right)\right\}$and $\left\{\left(\gamma_{ \pm}, \gamma_{\mp}\right)\right\}$. The corresponding attracting 2 -cycles of f_{c} are respectively $\left\{\left(\gamma_{ \pm}, 0\right)\right\}$ and $\{(-1 / 2, \pm \sqrt{-4 c-3} / 2)\}$. Thus, $g^{2 n}(x, y) \rightarrow\left(\gamma_{*}, \gamma_{* *}\right)$ if $(x, y) \in \mathcal{B}_{*} \times \mathcal{B}_{* *}$, where $*$ and $* *$ indicate + or - .

From these arguments, we have the following.
Theorem 1. Suppose $-5 / 4<c<-3 / 4$.
If $(x+y, x-y) \in \mathcal{B}_{ \pm} \times \mathcal{B}_{ \pm}$, then $f_{c}^{2 n}(x, y) \rightarrow\left(\gamma_{ \pm}, 0\right)$.
If $(x+y, x-y) \in \mathcal{B}_{ \pm} \times \mathcal{B}_{\mp}$, then $f_{c}^{2 n}(x, y) \rightarrow(-1 / 2, \pm \sqrt{-4 c-3} / 2)$.
Figure 1 indicates the basin of f_{c} with $c=-1$. The white regions correspond to $\mathcal{B}_{ \pm} \times \mathcal{B}_{ \pm}$, while the black regions correspond to $\mathcal{B}_{ \pm} \times \mathcal{B}_{\mp}$.

Figure 1: Basin of f_{c} with $c=-1$

Here we use the basic facts in complex dynamcs, which is seen in Milnor [M].

2 Maps of higher degrees

The same argument works for higher degree polynomial maps of the form :

$$
f_{c}(x, y)=\left(\frac{(x+y)^{d}+(x-y)^{d}}{2}+c, \frac{(x+y)^{d}-(x-y)^{d}}{2}\right), \quad d \geq 2
$$

Put $p_{c}(x)=x^{d}+c, g_{c}(x, y)=\left(p_{c}(x), p_{c}(y)\right)$ and $\phi(x, y)=(x+y, x-y)$. Then

$$
\phi \circ f_{c}=g_{c} \circ \phi .
$$

The dynamics of p_{c} highly depends on whether the degree d is even or odd. This is because p_{c} is monotonely increasing if and only if d is odd. Put $c_{0}=\frac{d-1}{d^{d /(d-1)}}$.

Suppose that d is odd. Then the following holds:
(1) p_{c} has a unique real fixed point for $c>c_{0}$.
(2) p_{c} has a double fixed point β at $c=c_{0}$.
(3) p_{c} has three real fixed points for $c \in\left(-c_{0}, c_{0}\right)$.
(4) p_{c} has a double fixed point $-\beta$ at $c=-c_{0}$.
(5) p_{c} has a unique real fixed point for $c<-c_{0}$.

Suppose that d is even. Then the following holds:
(6) p_{c} has no real fixed points for $c>c_{0}$.
(7) p_{c} has a double fixed point β at $c=c_{0}$.
(8) p_{c} has two real fixed points for $c<c_{0}$.

In the sequel, we assume that $-c_{0}<c<c_{0}$ when d is odd or $c<c_{0}$ when d is even. Let $\beta>0$ be the maximal real fixed point of p_{c}, which is known to be repelling.

Lemma 1. If d is odd, then $K\left(p_{c}\right)=\left[\beta^{\prime}, \beta\right]$, where $\beta^{\prime}<0$ is the minimal fixed point of p_{c}, which is known to be repelling.

If d is even, then $K\left(p_{c}\right) \subset[-\beta, \beta]$. Moreover, suppose that $0 \in K\left(p_{c}\right)$. Then $K\left(p_{c}\right)=[-\beta, \beta]$.

Note that $0 \in K\left(p_{c}\right)$ holds if and only if $-c_{0} \leq c \leq c_{0}$ in case d is odd. Suppose that d is even. Then $0 \in K\left(p_{c}\right)$ holds if and only if $-\beta \leq c$. Hence, there exists c_{0}^{\prime} such that $0 \in K\left(p_{c}\right)$ if and only if $c_{0}^{\prime} \leq c \leq c_{0}$.

Proof. First assume that d is even. Then $p_{c}^{n}(x) \rightarrow+\infty$ if $x>\beta$. If $x<-\beta$, $p_{c}(x)=p_{c}(-x)>\beta$, hence $p_{c}^{n}(x) \rightarrow+\infty$. Therefore, $K\left(p_{c}\right) \subset[-\beta, \beta]$. Note that $c=p_{c}(0)$ is the minimum value of p_{c}. Therefore, $p_{c}^{n}(0) \rightarrow+\infty$ if $c<-\beta$. If $c \geq-\beta$, then $p_{c}([-\beta, \beta]) \subset[-\beta, \beta]$ and we have $K\left(p_{c}\right)=[-\beta, \beta]$.

Next suppose d is odd. Then it is easy to see that $p_{c}^{n}(x) \rightarrow+\infty$ if $x>\beta$, while $p_{c}^{n}(x) \rightarrow-\infty$ if $x<\beta^{\prime}$. Thus $K\left(p_{c}\right) \subset\left[\beta^{\prime}, \beta\right]$. Since p_{c} is monotonely increasing, $p_{c}\left(\left[\beta^{\prime}, \beta\right]\right) \subset\left[\beta^{\prime}, \beta\right]$, which implies $K\left(p_{c}\right)=\left[\beta^{\prime}, \beta\right]$.

Note that, if d is odd and $-c_{0}<c<c_{0}, p_{c}$ has an attracting fixed point α, whose basin is equal to $\operatorname{int} K\left(p_{c}\right)$. This easily follows also from the fact that p_{c} is monotonely increasing.

The corresponding attracting fixed point of f_{c} is the point $\gamma=(\alpha, 0)$.
Theorem 2. Suppose that d is odd and $-c_{0}<c<c_{0}$. Then

$$
K\left(f_{c}\right)=\left\{(x, y) \in \mathbb{R}^{2} ; \beta^{\prime} \leq x+y, x-y \leq \beta\right\}
$$

Its interior $\operatorname{int} K\left(f_{c}\right)$ is the basin of the fixed point γ of f_{c}.
Proof. Since $K\left(g_{c}\right)=\left[\beta^{\prime}, \beta\right] \times\left[\beta^{\prime}, \beta\right]$, the first assertion follows. The second one follows from the fact that $g_{c}^{n}(x, y) \rightarrow(\alpha, \alpha)$ for any $(x, y) \in \operatorname{int} K\left(g_{c}\right)$.

If d is even, as c decreases, period-doubling bifurcations appear. That is, there exists a decreasing sequence $c_{0}>c_{1}>c_{2}>\cdots$ converging to c_{∞} such that, for $c \in\left(c_{n+1}, c_{n}\right), p_{c}$ has an attracting cycle of period 2^{n}. Note that $c_{0}=1 / 4, c_{1}=-3 / 4, c_{2}=-5 / 4$ if $d=2$.

Theorem 1 extends to any even degree. If $c \in\left(c_{1}, c_{0}\right), p_{c}$ has an attracting fixed point α and $K\left(g_{c}\right)=K\left(p_{c}\right) \times K\left(p_{c}\right)=[-\beta, \beta] \times[-\beta, \beta]$. Thus we have

$$
K\left(f_{c}\right)=\left\{(x, y) \in \mathbb{R}^{2} ;|x-y|,|x-y| \leq \beta\right\}
$$

If $c \in\left(c_{2}, c_{1}\right), p_{c}$ has an attracting 2-cycle $\left\{\gamma_{1}, \gamma_{2}\right\}$. Let α be another repelling real fixed point of p_{c} and let U_{j} be the connected component of $\operatorname{int} K\left(p_{c}\right) \backslash \cup_{n \geq 0} p_{c}^{-n}(\alpha)$ containing γ_{j} respectively for $j=1,2$. Put $\mathcal{B}_{j}=$
$\cup_{n \geq 0} p_{c}^{-2 n}\left(U_{j}\right)$. Then g_{c} has two attracting 2-cycles $\left\{\left(\gamma_{1}, \gamma_{1}\right),\left(\gamma_{2}, \gamma_{2}\right)\right\}$ and $\left\{\left(\gamma_{1}, \gamma_{2}\right),\left(\gamma_{2}, \gamma_{1}\right)\right\}$. The corresponding attracting 2-cycles of f_{c} are $\left\{\left(\gamma_{1}, 0\right),\left(\gamma_{2}, 0\right)\right\}$ and $\left\{\left(\frac{\gamma_{1}+\gamma_{2}}{2}, \frac{\gamma_{1}-\gamma_{2}}{2}\right),\left(\frac{\gamma_{1}+\gamma_{2}}{2}, \frac{\gamma_{2}-\gamma_{1}}{2}\right)\right\}$ respectively.

Then $g_{c}^{2 n}(x, y) \rightarrow\left(\gamma_{i}, \gamma_{j}\right)$ if $(x, y) \in \mathcal{B}_{i} \times \mathcal{B}_{j}$ for $i, j=1,2$. Thus we have the following.

Theorem 3. Suppose that d is even and $c_{2}<c<c_{1}$. Then the folowing hold for $i, j=1,2$.
If $(x+y, x-y) \in \mathcal{B}_{j} \times \mathcal{B}_{j}$, then $f_{c}^{2 n}(x, y) \rightarrow\left(\gamma_{j}, 0\right)$.
If $(x+y, x-y) \in \mathcal{B}_{j} \times \mathcal{B}_{3-j}$, then $f_{c}^{2 n}(x, y) \rightarrow\left(\frac{\gamma_{1}+\gamma_{2}}{2}, \frac{\gamma_{j}-\gamma_{3-j}}{2}\right)$.

References

[M] J. Milnor, Dynamics in one complex variable. 3rd edition (Annals of Math. Studies, 160). Princeton University Press, Princeton, NJ, 2006.

[^0]: ＊Professor，General Education and Research Center，Tokyo Polytechnic University，

